本文目录
- 究竟是谁搞定了围棋人工智能
- 机器人战胜围棋冠军 怎么写作文
- 职业棋手输给谷歌围棋AI,围棋界人士都怎么说
- AlphaGo凭什么再胜世界围棋第一人
- 对于机器人击败围棋高手的看法800字作文
- 什么样的人工智能击败了职业围棋手
- 樊麾是哪国人就是下围棋那个
- 樊麾的介绍
- 最早阿尔法狗什么时候出现的
究竟是谁搞定了围棋人工智能
好多种但Google应该是最牛的Google日前宣布其程序AlphaGo击败了欧洲围棋职业选手,这意味着人工智能技术又或得了极大的突破。计算机目前已经在许多智力游戏比赛上战胜了人类顶级选手,包括国际象棋、五子棋、黑白棋、拼字游戏等等。而对于有着2500年历史的东方游戏围棋——比国际象棋要复杂得多——人类始终能够保持在和计算机对决中的胜利。不过,Google人工智能专家表示, 这个壁垒或许很快将要被打破。随着AlphaGo在没有任何让子的情况下以5:0完胜法国围棋职业二段棋手樊麾,AlphaGo将在三月份对战韩国九段棋手李世乭。今天早上,《自然》杂志发表了一篇Google DeepMind团队——程序AlphaGo的创造者撰写的关于深度学习系统的论文。根据论文描述,在AlphaGo中,DeepMind研究员在程序中录入了大量职业棋手的棋谱——加起来多达3000万步——他们用增强学习的方法训练AI,让它自己下棋,研习棋谱。不过这只是第一步。理论上,这样的训练只能让这个人工智能系统无法突破人类的计算。为了获得更好的成绩,研究员随后让系统进行自我博弈,计算出比基础棋谱更多新的打点。也就是说,战胜人类就要靠这些新的东西。“这其中最重要的是,AlphaGo不仅记录着大量的棋谱,还有一系列规则来指导 思考 ,”DeepMind CEO Demis Hassabis说道,“事实上,该程序能够通过机器学习的方式掌握比赛技巧。”DeepMind的技术核心结合了“强化学习”及其他人工智能手段,这种技术能够用于解决现实机器人执行物理任务和对环境作出回应的技术问题。就是说,要让机器人变得更“自然”。希望可以帮助你,欢迎采纳
机器人战胜围棋冠军 怎么写作文
机器人与人公平对弈1997年,人工智能机器人第一次打败顶尖的国际象棋人类选手。2006年,人类最后一次打败国际象棋人工智能机器人,此后便一再败北,正应了四十多年前计算机科学家的预言。但在围棋领域,由于人工智能机器人棋力比人类弱,在之前的比赛中,人类选手都会让子,而且人工智能机器人主要和业余段位的棋手比赛。因此,对于机器人的“进攻”,人们会以在围棋领域的智力优势来自我安慰。然而,这次情况不同了,与机器人对弈的选手樊麾目前是法国国家围棋队总教练,已经连续三年赢得欧洲围棋冠军的称号。而“阿尔法围棋”对战樊麾是完全公平的比赛,没有让子,却赢了比赛。此前,研究者也让“阿尔法围棋”和其他的围棋人工智能机器人进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵CrazyStone、Zen和Pachi三个先进的人工智能机器人,胜率分别是77%、86%和99%,由此可见“阿尔法围棋”有多强大。在2016年3月份,“阿尔法围棋”将和韩国九段棋手李世石在首尔一战,奖金是由谷歌提供的100万美金。李世石是最近10年中获得世界第一头衔最多的棋手。之前有人预测说,人工智能机器人需要再花十几年才能在围棋领域战胜人类,这场比赛或许会就此载入史册。
职业棋手输给谷歌围棋AI,围棋界人士都怎么说
樊麾(欧洲冠军,职业二段,落败于谷歌AI AlphaGo对弈的棋手): ”在中国,围棋不仅仅是游戏,还是生活的写照。人们常说,如果你的棋局有问题,也许你的生活也出现了问题。 输棋很艰难。在和AlphaGo下棋之前,我觉得我会赢。第一局棋之后,我改变了策略,进攻得更多,但我还是输了。人类的问题是,我们有时会犯下大错,因为我们是人。我们会疲劳,会因为太过想赢而承受压力。但程序不是这样的。程序很强大,很稳定,就像是一堵墙。对我来说,这个区别很大。我知道AlphaGo是电脑,但如果没人告诉我,我或许会觉得对手是个有点奇怪,但非常强大的人,一个真实的人。 当然,我输棋的时候并不高兴,但所有职业棋手都会输棋。输棋之后,我会研究这盘棋,也许会改变下法。我觉得这对今后来说是件好事。“ 托比•曼宁(Toby Manning),英国围棋协会司库,樊麾与AlphaGo棋赛的评委 围棋手们都知道围棋是人工智能尚未攻破的领域之一,所以,我觉得人们的预期是电脑的确会达到职业棋手的水平,但那也是在十多年后。在这场比赛中,我原以为樊麾会赢。 在比赛过程中,让我印象最深的是你分不出谁是人类,谁是计算机。在许多软件中,电脑会走出许多步好棋,然后突然开始摸不着头脑。但对AlphaGo和樊麾来说,你分不出谁是谁。 AlphaGo和人类不同的地方之一是它管理时间的方式。樊麾每步所花的时间比AlphaGo更长。AlphaGo的进攻性似乎也没有人类那么强。它的下法非常平稳,而不是通过占地或吃子向对方发起进攻。 就像深蓝达到国际象棋大师级别时那样,我觉得围棋界都想去试试这个软件,对弈一番,看看自己在哪里出了差错。
AlphaGo凭什么再胜世界围棋第一人
在13日结束的AlphaGo与李世石五番棋对决中的第四局,李世石胜出。连败三局之后,人类终于扳回一局。但这场胜利来得有些迟,AlphaGo此前已经痛快得赢得这场人机大赛的胜利。这场生生夺走一周眼球的人机围棋大战,人们最想追问的是,AlphaGo为什么能战胜人类?赛前,无论是职业棋手还是科技界,并不看好机器胜利机器赢了人类,这个结果让无数人感到吃惊与意外。在这场比赛开始前,很多职业棋手认为 AlphaGo 不可能赢得比赛。棋圣聂卫平在赛前下定论认为:电脑和人下围棋,百分之百是人赢。而科技界对 AlphaGo 是否能赢得比赛表示谨慎看好,并没有十足信心。这从 AlphaGo 创始人德米什 · 哈萨比斯(Demis Hassabis)在第二场比赛结束后的发言可以看出,他当时认为 AlphaGo 的胜利难以置信。在与李世石对弈前,AlphaGo 于去年 10 月与欧洲围棋冠军樊麾进行了对弈,以 5:0 战胜了樊麾,而在非正式对局当中, 樊麾则 2 次中盘战胜了 AlphaGo。这也被外界认为 AlphaGo 很难战胜李世石的原因。樊麾的等级为职业棋手二段,李世石为职业九段。围棋界公认,这两人的围棋水平为:樊麾是踏在了职业门槛,而李世石则是职业顶尖,前围棋世界第一人,代表了人类围棋最高水平。但仅仅过了 5 个月,AlphaGo 在五番棋中以 3:0 战胜了李世石,并且在比赛过程中下出了很多令专业人士都非常惊讶的妙手。很多关注人机大战的人都想要知道一个问题:Google是怎么设计AlphaGo的?比如,AlphaGo 的运行机理是什么?进入自我学习的阶段之后,谷歌团队是否还需要人工对其进行不断的人工优化、改良以及提升?还是完全凭借其自身的学习能力来提升?最近两天 ,DoNews 记者在 Twitter 上就该问题向德米什 · 哈萨比斯进行了两次提问,但德米什 · 哈萨比斯没有进行回应。在对外公布的所有信息中,包括其在《Nature》上发表过的两篇论文中,都只提到了他们的 AlphaGo 能够做什么,都没有透露 AlphaGo 的运行机制是什么,即 AlphaGo 到底是怎么做到的。德米什 · 哈萨比斯仅透露,就 AlphaGo 的对弈水平而言,他们的神经网络训练算法远比它使用的那些硬件重要得多。此外,这次人机对战所消耗的计算量差不多与 AlphaGo 和樊辉对弈中消耗的相当,使用的是分布式方案搜寻,能有效节省决策用时。人工智能战胜人类,为何引起这么多关注?围棋这项发源于中国的有两千年历史的智力游戏,曾被认为是最后一个人工智能不能超越人类的游戏。围棋游戏的规则是:棋盘由纵横各十九条等距离、垂直交叉的平行线构成。形成 361 个交叉点,在围棋中简称为 “点”。对局双方各执一色棋子,轮流下子,最后谁占的点多,谁就赢。虽然围棋规则简单,但建立在此规则之上的各种策略、棋理、布局、定式、手筋、手段,却是无穷无尽的。聂卫平曾解释了其中的原因,围棋棋盘上有 361 个点,其理论变化值是 361 阶乘,阶乘到底本身就是一个无限大的数,无法表达。比如,棋手在下第一手时有 361 个点可以选,下第二手有 360 个点,第三手是 359,361×360×359×……2×1,即 361 阶乘。(有数据统计,结果约是 1.43 乘以 10 的 768 次方。)这个数字有多大呢?Google 灵感来源于一个单词 Googol,以表示知识之海无穷无尽。Googol 代表 “10 的 100 次方”,这个数字是人类目前最有想象力的数字。即使人类已知宇宙中原子数量,也不过是 10 的 80 次方。同时,在围棋对弈中,还包含着很多变化:打二还一,打三还一,打劫,倒扑等,每一种变化都会衍生出无数的变化。在下棋过程中,棋手需要有一种判断。而此前,电脑被认为无法承担这种判断,因为这不是计算就能够完成的。AlphaGo 是怎么做到的?AlphaGo 结合了 3 大块技术:蒙特卡洛树搜索 (MCTS) 是大框架,这也是很多博弈 AI 都会用的算法;强化学习 (RL) 是学习方法,用来提升 AI 的实力;深度神经网络 (DNN) 是工具,用来拟合局面评估函数和策略函数。我们在这里用比较通俗的语言来解释一下:棋盘上有 361 个点,AlphaGo 会进行一层层分析:下在哪个点或区域是有利的?这时它会参考输入的过往的棋谱,对局和模拟,进行选择、推演,并对推演结果进行估值。AlphaGo 能够理解会根据“赢”这个目标来进行估值,选择出一个对“赢”足够优的解。围棋?AI 能超越人类的还有很多.AlphaGo 的胜利,引发了大讨论。因为人类开始面临着一个前所未有的情况:人类造出了,在智能的某个点上,超越自己的东西。 通过黑白纹枰上的胜利,AI 已经在人类的智力围墙打开了第一个缺口,但这绝非最后一个。在过往漫长的岁月里,机器都只是人类劳动的一种替代与工具,无论飞机、汽车、起重机还是电子计算机、互联网,尽管看上去有着无限的能力,但却从未侵入由人类大脑所把持的领域——“创造”。而随着 AlphaGo 的胜利,这一天或许将成为历史。实际上,过去几天,这台人工智能在围棋盘上发挥的创造能力,已经超越了人类两千年于此道上积累的智慧结晶。如果我们检索人类的“资源库”,会发现,复杂程度超越围棋的智力行为并不多见。这也意味着很多传统人类脑力劳动的形态,发生改变。很多从事创作、设计、推演、归纳的工作,都将被 AI 部分替代。如果将思路拓展出去,可以应用在音乐的创作,等其他类似于元素组合式的创造,从某中意义上说,它能够击败围棋的顶尖高手,也就有可能让人难辨真假的音乐和旋律。甚至做出更多我们想不到的事情。按照德米什 · 哈萨比斯的设想,人工智能未来的主要用途将是医疗、智能助理和机器人。而人们通过这次比赛担忧的是,如果人工智能拥有创造性的思维,加上远超出人类的运算能力,是否有一天会统治人类。就像网友评论里说的段子一样,“第四局AlphaGo输了,是不是AlphaGo故意输的?细思极恐”。
对于机器人击败围棋高手的看法800字作文
1997年,人工智能机器人第一次打败顶尖的国际象棋人类选手。2006年,人类最后一次打败国际象棋人工智能机器人,此后便一再败北,正应了四十多年前计算机科学家的预言。但在围棋领域,由于人工智能机器人棋力比人类弱,在之前的比赛中,人类选手都会让子,而且人工智能机器人主要和业余段位的棋手比赛。因此,对于机器人的“进攻”,人们会以在围棋领域的智力优势来自我安慰。然而,这次情况不同了,与机器人对弈的选手樊麾目前是法国国家围棋队总教练,已经连续三年赢得欧洲围棋冠军的称号。而“阿尔法围棋”对战樊麾是完全公平的比赛,没有让子,却赢了比赛。此前,研究者也让“阿尔法围棋”和其他的围棋人工智能机器人进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵CrazyStone、Zen和Pachi三个先进的人工智能机器人,胜率分别是77%、86%和99%,由此可见“阿尔法围棋”有多强大。在2016年3月份,“阿尔法围棋”将和韩国九段棋手李世石在首尔一战,奖金是由谷歌提供的100万美金。李世石是最近10年中获得世界第一头衔最多的棋手。之前有人预测说,人工智能机器人需要再花十几年才能在围棋领域战胜人类,这场比赛或许会就此载入史册。
什么样的人工智能击败了职业围棋手
由谷歌英国研究团队开发的计算机系统在围棋比赛中击败了职业棋手。作为一种古老的东方棋类游戏,围棋强调策略和直觉。过去数十年,围棋一直是人工智能专家未能攻克的堡垒。然而,人工智能正在这一领域取得重要突破。此前,计算机已在其他多种比赛,例如国际象棋、奥赛罗棋和智力竞赛《危险边缘》中胜过了人类对手。然而,围棋是一种具有2500多年历史的古老技艺,其复杂程度远超国际象棋,因此人类高手此前几乎不费吹灰之力就能胜过即使最强的计算机系统。本月早些时候,谷歌以外的人工智能专家已提出这样的问题,即人工智能在围棋领域的突破能否迅速实现。而直到去年,大部分人仍认为,计算机击败职业棋手还需要10年时间。然而,谷歌已经做到了这一点。法国研究者雷米·库洛姆(Remi Coulom)此前曾开发了全球最强大的人工智能围棋程序。他表示:“这一天的到来比我想象中更快。”谷歌于2014年收购了自称为“人工智能领域阿波罗项目”的DeepMind。去年10月,DeepMind的研究团队在伦敦办公室里主持了人工智能与人类选手的较量。DeepMind的这一系统名为AlphaGo,而它的对手是欧洲围棋冠军樊麾。在《自然》杂志和英国围棋协会裁判的监督下,AlphaGo在五番棋比赛中取得了5:0的压倒性胜利。《自然》杂志坦古伊·乔阿德(Tanguy Chouard)博士在本周二的媒体电话会议上表示:“无论作为研究者还是,这都是我职业生涯中最令人兴奋的时刻之一。自然》杂志发表的一篇论文介绍了DeepMind的系统。这一系统利用了多种技术,其中也包括越来越重要的一种人工智能技术,即深度学习。利用海量的人类高手棋谱(总步数约达3000万),DeepMind的研究团队训练AlphaGo自主学习围棋。然而这仅仅只是第一步。从理论上来说,这样的训练最多只能培养出与最优秀人类选手同等棋力的人工智能。而为了击败最优秀的人类选手,研究团队使这一系统自己与自己对弈。这带来了新的数据,而这些数据可被用于训练新的人工智能系统,最终胜过顶尖高手。DeepMind负责人德米斯·哈萨比斯(Demis Hassabis)表示:“最重要的一点在于,AlphaGo不仅仅是专家系统,遵循人为设定的规则。实际上,这使用了通用的机器学习技术,能自行探索如何在围棋比赛中取胜。”人工智能的这次胜利并不新鲜。谷歌、Facebook和微软等互联网服务早已利用深度学习技术去识别照片和语音,或是理解自然语言。DeepMind的技术结合了深度学习、增强学习,以及其他方法。关于现实世界机器人如何学习日常任务,并对周围环境做出响应,这指明了未来的方向。哈萨比斯表示:“这非常适合机器人。”他同时认为,这些方法能加速科学研究,通过在工作中引入人工智能系统,科学家将可以取得更多成果。“这一系统能处理规模更大的数据集,分析得出结构化信息并提供给人类专家,从而提高效率。系统甚至能向人类专家提供方式方法的建议,协助带来突破。”不过目前,围棋仍是他的关注重点。在关起门来击败一名职业选手之后,哈萨比斯及其团队将目标瞄准了全球顶尖的围棋选手。3月中旬,AlphaGo将在韩国公开挑战李世石。李世石拥有的国际比赛冠军头衔数排名第二,而过去10年中,李世石有着最高的胜率。哈萨比斯认为,李世石就是“围棋界的费德勒”。比国际象棋更难2014年初,库洛姆的围棋软件Crazystone在日本的巡回赛中挑战了依田纪基九段,并取得了胜利。不过,这一胜利的成色不足:Crazystone获得了四子的让先。当时,库洛姆预言,在没有让先的情况下,人工智能击败顶尖围棋高手还需要10年时间。这一挑战的难度在于围棋本身。此前,在合理时间内,任何超级计算机都没有足够的处理能力,去预判每种可能的着法会带来什么样的后续结果。1997年,IBM“深蓝”击败了国际象棋大师卡斯帕罗夫,当时这台超级计算机采用了“暴力计算”的方式。从本质上来看,“深蓝”分析了每一步走法可能出现的各种结果。然而,这样做在围棋比赛中行不通。在国际象棋比赛中,一个回合可能的走法平均为35种。而围棋比赛采用了19x19的棋盘,平均每回合走法有250种。哈萨比斯指出,围棋棋盘上的棋型类型要比宇宙中的原子总数还要多。利用名为“蒙特卡洛树搜索”的方法,类似Crazystone的系统能完成更多步的预判。而结合其他一些技术,计算机可以完成对多种可能性的必要分析。这样的计算机能击败一些不错的围棋选手,但距离顶尖高手还有很大差距。对真正的高手来说,直觉是很重要的一部分。这些棋手会根据棋盘上棋型来选择如何行动,而不是精确分析每一种着法可能会带来的结果。哈萨比斯本人也是围棋选手,他表示:“良好的棋型看起来就很漂亮。这似乎遵循某种美学。这也是这一游戏数千年来历久不衰的原因。”不过,在进入2015年之后,一些人工智能专家,包括爱丁堡大学、Facebook和DeepMind的研究人员,开始探索利用深度学习技术去解决围棋的难题。他们设想,深度学习技术能模拟围棋比赛中必要的人类直觉。哈萨比斯表示:“围棋有着许多暗示,模式匹配很重要。深度学习可以做得很好。”自我增强深度学习的基础是神经网络。这种由软硬件构成的网络能模拟人脑中的神经元,其运转并非依靠“暴力计算”和人工制定的规则。神经网络会分析大量数据,以从事某项任务的“学习”。例如,如果向神经网络输入足够多的袋熊照片,那么它就能识别出袋熊。如果向神经网络输入足够多的单词发音,那么它就能识别你的语音。如果向神经网络输入足够多的围棋棋谱,那么它就能学会如何下围棋。在DeepMind、爱丁堡大学和Facebook,研究人员希望,通过“观察”棋盘棋型,神经网络能掌握下围棋的方法。正如Facebook近期在一篇论文中所说,这一技术的运行情况良好。通过深度学习和蒙特卡洛树方法的结合,Facebook的系统已经击败了一些人类选手。不过,DeepMind在此基础上更进一步。在学习了3000万步人类选手的围棋下法之后,这一神经网络预测人类选手下一步走法的准确率达到57%,远高于之前的44%。随后,哈萨比斯及其团队对这一神经网络进行了小幅调整,使其与自己对弈,这种做法被称作增强学习。在这一过程中,神经网络可以了解,什么样的走法能带来最好的结果。DeepMind研究员大卫·希维尔(David Silver)表示:“通过在神经网络之间进行数百万局的对弈,AlphaGo学会自己发现新策略,并逐步改进。”希维尔表示,这使得AlphaGo能胜过其他围棋软件,包括Crazystone。随后,研究人员将结果输入至另一个神经网络。在首先判断对手的下一步行动之后,这一神经网络能利用同样的技巧去预判每一步的结果。这与“深蓝”等较老的系统类似,而不同之处在于AlphaGo能在过程中进行学习,并分析更多数据,不再使用暴力计算的方法去判断所有可能的结果。通过这种方式,AlphaGo不仅能胜过当前的人工智能系统,还能击败人类高手。专用芯片与大部分先进的神经网络类似,DeepMind的系统运行在基于GPU(图形处理芯片)的计算机上。GPU最初的设计目的是游戏和其他图像应用的图形渲染,但近年来研究表明,这类芯片也非常适合深度学习技术。哈萨比斯表示,DeepMind的系统在配备多个GPU芯片的单台计算机上有着相当好的表现,但为了挑战樊麾,研究人员搭建了更庞大的计算机网络,其中包括170块GPU卡和1200个标准CPU处理器。这一庞大的计算机网络对AlphaGo进行了训练,并参与了比赛。哈萨比斯表示,在与李世石的比赛中,AlphaGo将采用同样的硬件配置。目前,他们正在持续改进这一人工智能系统。为了准备与李世石的比赛,他们还需要互联网连接。哈萨比斯表示:“我们正在安装自己的光缆。”库洛姆和其他一些专家指出,与李世石的比赛将更困难。不过,库洛姆已经下注DeepMind。过去10年中,他一直希望开发出能胜过顶尖围棋高手的系统,他认为,这一系统现在就在这里。他表示:“我正在购买一些GPU。”未来之路AlphaGo的重要性不言而喻。这一技术不仅可以应用于机器人和科学研究,也适合其他许多任务,例如类似Siri的移动语音助手以及金融投资决策。深度学习创业公司Skymind创始人克里斯·尼克尔森(Chris Nicholson)表示:“你可以将其用于任何具有对抗性的问题,例如需要用到策略的各种比赛,以及战争和商业交易。”对一些人来说,这种情况令人担忧,尤其考虑到DeepMind的系统已经有能力自学围棋。AlphaGo的学习素材并不来自人类,而是可以通过自行生成数据来自我指导。近几个月,特斯拉创始人伊隆·马斯克(Elon Musk)等知名人士曾表示,这样的人工智能系统最终将超越人类智力,突破人类的控制。不过,DeepMind的系统受到了哈萨比斯及其团队的严格控制。AlphaGo被用于最复杂的棋类游戏,但这仍只是一款游戏。实际上,AlphaGo距离真正的人类智慧还有遥远的距离,远远没有达到超级智能的水平。华盛顿大学专注于人工智能的法学教授、科技政策实验室创始人瑞安·卡洛(Ryan Calo)表示:“这仍是一种高度结构化的情况,并非真正人类水平的理解力。”不过,AlphaGo指明了未来的方向。如果DeepMind的人工智能系统能理解围棋,那么就能理解更多信息。卡洛表示:“宇宙只不过是一场更大的围棋游戏。”
樊麾是哪国人就是下围棋那个
樊麾,生于中国,围棋手。 2015年10月与谷歌人工智能AlphaGO较量0:5败于对方与“AlphaGo”一较高下的棋手是2013年至2015年的欧洲围棋冠军、生于中国的樊麾。2015年10月,双方以正式比赛中使用的十九路棋盘进行了无让子的5局较量,“AlphaGo”赢得满堂红 。 2016国际智力运动联盟智力运动精英赛,欧洲围棋冠军樊麾现身围棋赛场。当樊麾领衔的欧洲围棋队遇上3位世界冠军时越、周睿羊与唐韦星组成的中国男队,0比3的结果并不意外,但第三台樊麾与唐韦星的对局颇受关注。
樊麾的介绍
樊麾,生于中国,围棋手。2015年10月与谷歌人工智能AlphaGO较量0:5败于对方。职业二段。现任法国围棋队总教练,他曾多次获得法国冠军, 及蝉联2013年至2015年的三届欧洲围棋冠军、并且是“AlphaGo”选择一较高下的第一名职业棋手,是这次万众瞩目的人机大战的总裁判长1。
最早阿尔法狗什么时候出现的
最早阿尔法狗是2015年出现的,阿尔法狗最先出现在公众视野,是2015年10月5比0完胜欧洲冠军樊麾二段。樊麾是法国围棋队总教练,他曾多次获得法国冠军,及蝉联2013年至2015年的三届欧洲围棋冠军。两年前,樊麾有幸受邀成为第一位与阿尔法狗分先对弈的人类职业棋手。