您当前的位置:首页 > 养生 > 内容

堆排序的介绍?请问什么是堆排序

本文目录

  • 堆排序的介绍
  • 请问什么是堆排序
  • 什么是堆排序呢,其时间复杂度是怎么计算的呢
  • 堆排序法
  • 堆排序是什么
  • 计算机二级的中的“堆排序法”是怎么排的
  • 堆排序的简介
  • 堆排序过程
  • 什么是堆排序
  • 堆排序算法

堆排序的介绍

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] 》= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

请问什么是堆排序

堆排序就是相当于一个排序二叉树,只是它是根节点的优先级别大于任何儿子的优先级别,这样可以每次删除根节点,然后调整整个堆。 program heap;var a:array[1..10000] of integer; n,i:integer;procedure down(i:integer);var x,j:integer;begin x:=a[i]; j:=i*2; while j《=n do begin if a[j]》a[j+1] then j:=j+1; if a[j]《x then begin a[i]:=a[j]; i:=j; j:=i*2; end else break; end; a[i]:=x;end; procedure delete(i);begin n:=n-1; if (n=0)or(i=n+1) then exit else begin a[i]:=a[n+1]; down(i); end;end;{====main=====}begin readln(n); for i:=1 to n do read(a[i]); for i:=n div 2 downto 1 do down(i); for i:=1 to n do begin write(a); delete(1); end;end.{程序可能有点语法错误,全当是个程序代码}

什么是堆排序呢,其时间复杂度是怎么计算的呢

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为O(nlogn),空间复杂度为θ(1)。

堆排序法

堆排序法,就是通过堆这种数据结构来实现排序,算法复杂度为O(nlogn)。堆是一种完全二叉树且所有的父节点均大于(或小于)其子节点。堆排序就是将所有待排序的元素组成一个堆,然后不断弹出堆顶的元素并调用函数维持堆序,直到所有元素均被弹出后,排序完成。被弹出的元素序列即一个有序数列。维持堆序的一般做法是这样:当一个节点被插入时,将该节点放在堆的末尾(这是为了保证堆是完全二叉树)然后将该节点与它的父节点比较,看该节点是否大于(或小于)其父节点,即判断当前的堆是否满足堆序。如果不满足,则将该节点与其父节点交换。再将该节点与其新的父节点做比较,依此类推,直到该节点不再需要与其父节点交换为止。(即满足堆序时停止)当一个根节点被弹出(即被从堆中删除)时,将堆最尾部的节点移动到头结点的位置,然后将该节点不断与其子节点比较,如果不符合堆序则交换,直到符合堆序为止。以下是我自己写的一个C++的堆排序的程序,希望对你理解该算法有帮助。#include《iostream》using namespace std;int heap,size;void Percup(int s){ if(s==1) return ; if(heap[s/2]《heap[s]) { swap(heap[s/2],heap[s]); Percup(s/2); }}void Percdown(int s){ if(s*2+1《=size&&heap[s*2+1]》heap[s]) { swap(heap[s*2+1],heap[s]); Percdown(s*2+1); } if(s*2《=size&&heap[s*2]》heap[s]) { swap(heap[s*2],heap[s]); Percdown(s*2); }}void Insert(int k){ heap[++size]=k; Percup(size);}int Pop(){ int h=heap; heap=heap[size--]; Percdown(1); return h;}int main(){ int a,n,i; cin》》n; for(i=0;i《n;i++) { cin》》a; Insert(a); } for(i=0;i《n;i++) cout《《Pop()《《’ ’; system(“pause“); return 0;}

堆排序是什么

【概念】堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]]》=A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。【起源】1991年的计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(RobertW.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法(HeapSort)。【简介】堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。(1)用大根堆排序的基本思想①先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区②再将关键字最大的记录R(即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key③由于交换后新的根R可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。……直到无序区只有一个元素为止。(2)大根堆排序算法的基本操作:①建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h3)…+o(hlen/2)其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn)注意:①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止【特点】堆排序(HeapSort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录【算法分析】堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。平均性能:O(N*logN)。其他性能:由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1)。它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前和排序后他们的相对位置不发生变化)。

计算机二级的中的“堆排序法”是怎么排的

堆排序就是将所有待排序的元素组成一个堆,然后不断弹出堆顶的元素并调用函数维持堆序,直到所有元素均被弹出后,排序完成。被弹出的元素序列即一个有序数列。  

一般做法是这样:  

当一个节点被插入时,将该节点放在堆的末尾(这是为了保证堆是完全二叉树)然后将该节点与它的父节点比较,看该节点是否大于(或小于)其父节点,即判断当前的堆是否满足堆序。如果不满足,则将该节点与其父节点交换。

再将该节点与其新的父节点做比较,依此类推,直到该节点不再需要与其父节点交换为止。(即满足堆序时停止)  当一个根节点被弹出(即被从堆中删除)时,将堆最尾部的节点移动到头结点的位置,然后将该节点不断与其子节点比较,如果不符合堆序则交换,直到符合堆序为止。

扩展资料:

堆的操作

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

在堆的数据结构中,堆中的最大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。堆中定义以下几种操作: 

最大堆调整(Max Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点 

创建最大堆(Build Max Heap):将堆中的所有数据重新排序 

堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算

参考资料:

百度百科-堆排序

堆排序的简介

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。(1)用大根堆排序的基本思想① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区② 再将关键字最大的记录R(即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key③由于交换后新的根R可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。……直到无序区只有一个元素为止。(2)大根堆排序算法的基本操作:①建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h3)…+o(hlen/2) 其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn) ①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1).它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前 和排序后他们的相对位置不发生变化)

堆排序过程

1,实用的排序算法:选择排序(1)选择排序的基本思想是:每一趟(例如第i趟,i=0,1,2,3,……n-2)在后面n-i个待排序元素中选择排序码最小的元素,作为有序元素序列的第i个元素。待到第n-2趟做完,待排序元素只剩下一个,就不用再选了。(2)三种常用的选择排序方法1》直接选择排序2》锦标赛排序3》堆排序其中,直接排序的思路和实现都比较简单,并且相比其他排序算法,直接选择排序有一个突出的优势——数据的移动次数少。(3)直接选择排序简介1》直接选择排序(select sort)是一种简单的排序方法,它的基本步骤是:1)在一组元素V[i]~V[n-1]中选择具有最小排序码的元素;2)若它不是这组元素中的第一个元素,则将它与这组元素中的第一个元素对调;3)在这组元素中剔除这个具有最小排序码的元素,在剩下的元素V[i+1]~V[n-1]中重复执行1、2步骤,直到剩余元素只有一个为止。2》直接选择排序使用注意它对一类重要的元素序列具有较好的效率,这就是元素规模很大,而排序码却比较小的序列。因为对这种序列进行排序,移动操作所花费的时间要比比较操作的时间大的多,而其他算法移动操作的次数都要比直接选择排序来的多,直接选择排序是一种不稳定的 排序方法。3》直接选择排序C++函数代码//函数功能,直接选择排序算法对数列排序//函数参数,数列起点,数列终点void dselect_sort(const int start, const int end) { for (int i = start; i 《 end; ++i) { int min_position = i; for (int j = i + 1; j 《= end; ++j) { //此循环用来寻找最小关键码 if (numbers[j] 《 numbers[min_position]) { min_position = j; } } if (min_position != i) { //避免自己与自己交换 swap(numbers[min_position], numbers[i]); (4)关于锦标赛排序直接选择排序中,当n比较大时,排序码的比较次数相当多,这是因为在后一趟比较选择时,往往把前一趟已经做过的比较又重复了一遍,没有把前一趟的比较结果保留下来。锦标赛排序(tournament sort)克服了这一缺点。它的思想与体育比赛类似,就是把待排序元素两两进行竞赛,选出其中的胜利者,之后胜利者之间继续竞赛,再选出其中的胜利者,然后重复这一过程,最终构造出胜者树,从而实现排序的目的。2,堆排序的排序过程(1)个人理解:堆排序是选择排序的一种,所以它也符合选择排序的整体思想。直接选择排序是在还未成序的元素中逐个比较选择,而堆排序是首先建立一个堆(最大堆或最小堆),这使得数列已经“大致”成序,之后只需要局部调整来重建堆即可。建立堆及重建堆这一过程映射到数组中,其实就是一个选择的过程,只不过不是逐个比较选择,而是借助完全二叉树来做到有目的的比较选择。这也是堆排序性能优于直接选择排序的一个体现。(2)堆排序分为两个步骤:1》根据初始输入数据,利用堆的调整算法形成初始堆;2》通过一系列的元素交换和重新调整堆进行排序。(3)堆排序的排序思路1》前提,我们是要对n个数据进行递增排序,也就是说拥有最大排序码的元素应该在数组的末端。2》首先建立一个最大堆,则堆的第一个元素heap具有最大的排序码,将heap与heap[n-1]对调,把具有最大排序码的元素交换到最后,再对前面n-1个元素,使用堆的调整算法siftDown(0,n-2),重新建立最大堆。结果具有次最大排序码的元素又浮到堆顶,即heap的位置,再对调heap与heap[n-2],并调用siftDown(0,n-3),对前n-2个元素重新调整,……如此反复,最后得到一个数列的排序码递增序列。(4)堆排序的排序过程:下面给出局部调整成最大堆的函数实现siftDown(),这个函数在前面最小堆实现博文中的实现思路已经给出,只需做微小的调整即可用在这里建立最大堆。

什么是堆排序

【概念】堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] 》= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。【起源】1991年的计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法( Heap Sort )。【简介】堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。(1)用大根堆排序的基本思想① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区② 再将关键字最大的记录R(即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key③由于交换后新的根R可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。……直到无序区只有一个元素为止。(2)大根堆排序算法的基本操作:①建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h3)…+o(hlen/2) 其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn) 注意:①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止【特点】堆排序(HeapSort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录【算法分析】堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。平均性能:O(N*logN)。其他性能:由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1)。它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前 和排序后他们的相对位置不发生变化)。

堆排序算法

#include《iostream》using namespace std;int a,n;void d(int i,int m){ while(i*2《=m) { i=i*2; if(i《m&&a[i]《a[i+1]) i++; if(a[i]》a[i/2]) swap(a[i],a[i/2]); else break; }}int main(){ cin》》n; for(int i=1;i《=n;i++) cin》》a[i]; for(int i=n;i》=n/2;i--) d(i,n); for(int i=n;2;i--) {swap(a[i],a);d(1,i-1);} for(int i=1;i《-n;i++) cout《《a[i]《《“ “; return 0;}


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 潼南电脑维修(潼南那家电脑维护好,维修好,网络安装好)

下一篇: 哈曼卡顿蓝牙音箱(哈曼卡顿Aura Studio3蓝牙音箱,为何这款产品至今经久不衰)



猜你感兴趣

推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号