关于【放烟花的寓意和象征】,放烟花 寓意,今天犇涌小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
内容导航:1、「Python」零起步数学+神经网络入门2、放烟花的寓意和象征1、「Python」零起步数学+神经网络入门
摘要:手把手教你用(Python)零起步数学+神经网络入门!
在这篇文章中,我们将在Python中从头开始了解用于构建具有各种层神经网络(完全连接,卷积等)的小型库中的机器学习和代码。最终,我们将能够写出如下内容:
假设你对神经网络已经有一定的了解,这篇文章的目的不是解释为什么构建这些模型,而是要说明如何正确实现。
逐层
我们这里需要牢记整个框架:
1. 将数据输入神经网络
2. 在得出输出之前,数据从一层流向下一层
3. 一旦得到输出,就可以计算出一个标量误差。
4. 最后,可以通过相对于参数本身减去误差的导数来调整给定参数(权重或偏差)。
5. 遍历整个过程。
最重要的一步是第四步。 我们希望能够拥有任意数量的层,以及任何类型的层。 但是如果修改/添加/删除网络中的一个层,网络的输出将会改变,误差也将改变,误差相对于参数的导数也将改变。无论网络架构如何、激活函数如何、损失如何,都必须要能够计算导数。
为了实现这一点,我们必须分别实现每一层。
每个层应该实现什么
我们可能构建的每一层(完全连接,卷积,最大化,丢失等)至少有两个共同点:输入和输出数据。
现在重要的一部分
假设给出一个层相对于其输出(∂E/∂Y)误差的导数,那么它必须能够提供相对于其输入(∂E/∂X)误差的导数。
è®°ä½ï¼Eæ¯æ éï¼ä¸ä¸ªæ°åï¼ï¼XåYæ¯ç©éµã
我们可以使用链规则轻松计算∂E/∂X的元素:
为什么是∂E/∂X?
对于每一层,我们需要相对于其输入的误差导数,因为它将是相对于前一层输出的误差导数。这非常重要,这是理解反向传播的关键!在这之后,我们将能够立即从头开始编写深度卷积神经网络!
花样图解
基本上,对于前向传播,我们将输入数据提供给第一层,然后每层的输出成为下一层的输入,直到到达网络的末端。
对于反向传播,我们只是简单使用链规则来获得需要的导数。这就是为什么每一层必须提供其输出相对于其输入的导数。
这可能看起来很抽象,但是当我们将其应用于特定类型的层时,它将变得非常清楚。现在是编写第一个python类的好时机。
抽象基类:Layer
所有其它层将继承的抽象类Layer会处理简单属性,这些属性是输入,输出以及前向和反向方法。
from abc import abstractmethod# Base classclass Layer: def __init__(self): self.input = None; self.output = None; self.input_shape = None; self.output_shape = None; # computes the output Y of a layer for a given input X @abstractmethod def forward_propagation(self, input): raise NotImplementedError # computes dE/dX for a given dE/dY (and update parameters if any) @abstractmethod def backward_propagation(self, output_error, learning_rate): raise NotImplementedError
正如你所看到的,在back_propagation函数中,有一个我没有提到的参数,它是learning_rate。 此参数应该类似于更新策略或者在Keras中调用它的优化器,为了简单起见,我们只是通过学习率并使用梯度下降更新我们的参数。
全连接层
现在先定义并实现第一种类型的网络层:全连接层或FC层。FC层是最基本的网络层,因为每个输入神经元都连接到每个输出神经元。
前向传播
每个输出神经元的值由下式计算:
使用矩阵,可以使用点积来计算每一个输出神经元的值:
当完成前向传播之后,现在开始做反向传播。
反向传播
正如我们所说,假设我们有一个矩阵,其中包含与该层输出相关的误差导数(∂E/∂Y)。 我们需要 :
1.关于参数的误差导数(∂E/∂W,∂E/∂B)
2.关于输入的误差导数(∂E/∂X)
首先计算∂E/∂W,该矩阵应与W本身的大小相同:对于ixj,其中i是输入神经元的数量,j是输出神经元的数量。每个权重都需要一个梯度:
使用前面提到的链规则,可以写出:
那么:
这就是更新权重的第一个公式!现在开始计算∂E/∂B:
同样,∂E/∂B需要与B本身具有相同的大小,每个偏差一个梯度。 我们可以再次使用链规则:
得出结论:
现在已经得到∂E/∂W和∂E/∂B,我们留下∂E/∂X这是非常重要的,因为它将“作用”为之前层的∂E/∂Y。
再次使用链规则:
最后,我们可以写出整个矩阵:
æ们已ç»å¾å°FCå±æéçä¸ä¸ªå ¬å¼ï¼
编码全连接层
现在我们可以用Python编写实现:
from layer import Layerimport numpy as np# inherit from base class Layerclass FCLayer(Layer): # input_shape = (1,i) i the number of input neurons # output_shape = (1,j) j the number of output neurons def __init__(self, input_shape, output_shape): self.input_shape = input_shape; self.output_shape = output_shape; self.weights = np.random.rand(input_shape[1], output_shape[1]) - 0.5; self.bias = np.random.rand(1, output_shape[1]) - 0.5; # returns output for a given input def forward_propagation(self, input): self.input = input; self.output = np.dot(self.input, self.weights) + self.bias; return self.output; # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX. def backward_propagation(self, output_error, learning_rate): input_error = np.dot(output_error, self.weights.T); dWeights = np.dot(self.input.T, output_error); # dBias = output_error # update parameters self.weights -= learning_rate * dWeights; self.bias -= learning_rate * output_error; return input_error;
激活层
到目前为止所做的计算都完全是线性的。用这种模型学习是没有希望的,需要通过将非线性函数应用于某些层的输出来为模型添加非线性。
现在我们需要为这种新类型的层(激活层)重做整个过程!
不用担心,因为此时没有可学习的参数,过程会快点,只需要计算∂E/∂X。
我们将f和f'分别称为激活函数及其导数。
前向传播
正如将看到的,它非常简单。对于给定的输入X,输出是关于每个X元素的激活函数,这意味着输入和输出具有相同的大小。
反向传播
给出∂E/∂Y,需要计算∂E/∂X
注意,这里我们使用两个矩阵之间的每个元素乘法(而在上面的公式中,它是一个点积)
编码实现激活层
激活层的代码非常简单:
from layer import Layer# inherit from base class Layerclass ActivationLayer(Layer): # input_shape = (1,i) i the number of input neurons def __init__(self, input_shape, activation, activation_prime): self.input_shape = input_shape; self.output_shape = input_shape; self.activation = activation; self.activation_prime = activation_prime; # returns the activated input def forward_propagation(self, input): self.input = input; self.output = self.activation(self.input); return self.output; # Returns input_error=dE/dX for a given output_error=dE/dY. # learning_rate is not used because there is no "learnable" parameters. def backward_propagation(self, output_error, learning_rate): return self.activation_prime(self.input) * output_error;
可以在单独的文件中编写一些激活函数以及它们的导数,稍后将使用它们构建ActivationLayer:
import numpy as np# activation function and its derivativedef tanh(x): return np.tanh(x);def tanh_prime(x): return 1-np.tanh(x)**2;
损失函数
到目前为止,对于给定的层,我们假设给出了∂E/∂Y(由下一层给出)。但是最后一层怎么得到∂E/∂Y?我们通过简单地手动给出最后一层的∂E/∂Y,它取决于我们如何定义误差。
网络的误差由自己定义,该误差衡量网络对给定输入数据的好坏程度。有许多方法可以定义误差,其中一种最常见的叫做MSE - Mean Squared Error:
其中y *和y分别表示期望的输出和实际输出。你可以将损失视为最后一层,它将所有输出神经元吸收并将它们压成一个神经元。与其他每一层一样,需要定义∂E/∂Y。除了现在,我们终于得到E!
以下是两个python函数,可以将它们放在一个单独的文件中,将在构建网络时使用。
import numpy as np# loss function and its derivativedef mse(y_true, y_pred): return np.mean(np.power(y_true-y_pred, 2));def mse_prime(y_true, y_pred): return 2*(y_pred-y_true)/y_true.size;
网络类
到现在几乎完成了!我们将构建一个Network类来创建神经网络,非常容易,类似于第一张图片!
我注释了代码的每一部分,如果你掌握了前面的步骤,那么理解它应该不会太复杂。
from layer import Layerclass Network: def __init__(self): self.layers = []; self.loss = None; self.loss_prime = None; # add layer to network def add(self, layer): self.layers.append(layer); # set loss to use def use(self, loss, loss_prime): self.loss = loss; self.loss_prime = loss_prime; # predict output for given input def predict(self, input): # sample dimension first samples = len(input); result = []; # run network over all samples for i in range(samples): # forward propagation output = input[i]; for layer in self.layers: # output of layer l is input of layer l+1 output = layer.forward_propagation(output); result.append(output); return result; # train the network def fit(self, x_train, y_train, epochs, learning_rate): # sample dimension first samples = len(x_train); # training loop for i in range(epochs): err = 0; for j in range(samples): # forward propagation output = x_train[j]; for layer in self.layers: output = layer.forward_propagation(output); # compute loss (for display purpose only) err += self.loss(y_train[j], output); # backward propagation error = self.loss_prime(y_train[j], output); # loop from end of network to beginning for layer in reversed(self.layers): # backpropagate dE error = layer.backward_propagation(error, learning_rate); # calculate average error on all samples err /= samples; print('epoch %d/%d error=%f' % (i+1,epochs,err));
构建一个神经网络
最后!我们可以使用我们的类来创建一个包含任意数量层的神经网络!为了简单起见,我将向你展示如何构建......一个XOR。
from network import Networkfrom fc_layer import FCLayerfrom activation_layer import ActivationLayerfrom losses import *from activations import *import numpy as np# training datax_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]);y_train = np.array([[[0]], [[1]], [[1]], [[0]]]);# networknet = Network();net.add(FCLayer((1,2), (1,3)));net.add(ActivationLayer((1,3), tanh, tanh_prime));net.add(FCLayer((1,3), (1,1)));net.add(ActivationLayer((1,1), tanh, tanh_prime));# trainnet.use(mse, mse_prime);net.fit(x_train, y_train, epochs=1000, learning_rate=0.1);# testout = net.predict(x_train);print(out);
同样,我认为不需要强调很多事情,只需要仔细训练数据,应该能够先获得样本维度。例如,对于xor问题,样式应为(4,1,2)。
结果
$ python xor.py epoch 1/1000 error=0.322980epoch 2/1000 error=0.311174epoch 3/1000 error=0.307195...epoch 998/1000 error=0.000243epoch 999/1000 error=0.000242epoch 1000/1000 error=0.000242[array([[ 0.00077435]]), array([[ 0.97760742]]), array([[ 0.97847793]]), array([[-0.00131305]])]
卷积层
这篇文章开始很长,所以我不会描述实现卷积层的所有步骤。但是,这是我做的一个实现:
from layer import Layerfrom scipy import signalimport numpy as np# inherit from base class Layer# This convolutional layer is always with stride 1class ConvLayer(Layer): # input_shape = (i,j,d) # kernel_shape = (m,n) # layer_depth = output depth def __init__(self, input_shape, kernel_shape, layer_depth): self.input_shape = input_shape; self.input_depth = input_shape[2]; self.kernel_shape = kernel_shape; self.layer_depth = layer_depth; self.output_shape = (input_shape[0]-kernel_shape[0]+1, input_shape[1]-kernel_shape[1]+1, layer_depth); self.weights = np.random.rand(kernel_shape[0], kernel_shape[1], self.input_depth, layer_depth) - 0.5; self.bias = np.random.rand(layer_depth) - 0.5; # returns output for a given input def forward_propagation(self, input): self.input = input; self.output = np.zeros(self.output_shape); for k in range(self.layer_depth): for d in range(self.input_depth): self.output[:,:,k] += signal.correlate2d(self.input[:,:,d], self.weights[:,:,d,k], 'valid') + self.bias[k]; return self.output; # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX. def backward_propagation(self, output_error, learning_rate): in_error = np.zeros(self.input_shape); dWeights = np.zeros((self.kernel_shape[0], self.kernel_shape[1], self.input_depth, self.layer_depth)); dBias = np.zeros(self.layer_depth); for k in range(self.layer_depth): for d in range(self.input_depth): in_error[:,:,d] += signal.convolve2d(output_error[:,:,k], self.weights[:,:,d,k], 'full'); dWeights[:,:,d,k] = signal.correlate2d(self.input[:,:,d], output_error[:,:,k], 'valid'); dBias[k] = self.layer_depth * np.sum(output_error[:,:,k]); self.weights -= learning_rate*dWeights; self.bias -= learning_rate*dBias; return in_error;
它背后的数学实际上并不复杂!这是一篇很好的文章,你可以找到∂E/∂W,∂E/∂B和∂E/∂X的解释和计算。
如果你想验证你的理解是否正确,请尝试自己实现一些网络层,如MaxPooling,Flatten或Dropout
GitHub库
你可以在GitHub库中找到用于该文章的完整代码。
本文由阿里云云栖社区组织翻译。
文章原标题《math-neural-network-from-scratch-in-python》
作者:Omar Aflak 译者:虎说八道,审校:袁虎。
2、放烟花的寓意和象征
放烟花的寓意和象征
放烟花是年文化中富有代表性的一种传统形式,它寄托了人们对于新的一年的美好向往。人们常在过年的时候烧烟花爆竹,而爆竹烟花又有辟邪、消灾的寓意。在后来的传说里,“年”逐渐演变成为一种恶魔,而家家户户的爆竹烟花声,就是为了驱赶“年”这种怪物。
中国民间有“开门炮仗”一说。即在新的一年到来之际,家家户户开门的第一件事就是烧烟花炮竹,以哔哔叭叭的烟花爆竹声除旧迎新。烟花炮竹是中国特产,亦称“爆仗”、“爆竹”、“炮仗”、“鞭炮”。
烟花是一种美妙绚丽吉庆之物。它寓意这各种喜庆,吉祥,宏伟,欢乐,热情的场面和心情。
一般寓意:一飞冲天,一炮而红;此外不同种类烟花寓意不同。“绿色拉手”烟花,就像拱手般向各位拜年。 “金元宝”烟花,好像财神从天空洒金元宝到地上。
百花齐放,欣欣向荣。 红、粉红、草绿、橙及蓝色带等闪烁烟花,寓意洗涤疲惫心灵,身心康泰。“红暗绿纺”及“红暗银纺”的烟花,就好像大地初开,寓
烟花是绚丽的,但它不是文静的,当它冲出匣子的那一刻,它就是一个诡秘的魔术师,把匣子里的化学成分变成美丽的炮竹,让人们看到它的美,看到它的绚丽。 同时,它也想吸引很多人,让大家都来看看它多么的自信,多么的快乐,多么的美丽!
烟花绽放的瞬间的意义
这一刻是就是人们所说的花火
花火虽然生命短暂,却发绽放出了灿烂的光芒,证明了自己的存在
从这一层面上看,花火代表了一种勇于牺牲,在烈火中永生的精神,在纪念烈士十分恰当
但是客观的说,作为一个存在于世间的事物,花火的瞬间并不能留下一些永远的东西,而且还会带去愿望与希望。就如昙花一现所说,仅仅能够暂时站在平凡之上,却会永恒的.沉没在消逝之中其实,淡泊就可以明志,宁静终会致远。
放烟花的寓意和象征
放烟花是年文化中富有代表性的一种传统形式,它寄托了人们对于新的一年的美好向往。人们常在过年的时候烧烟花爆竹,而爆竹烟花又有辟邪、消灾的寓意。在后来的传说里,“年”逐渐演变成为一种恶魔,而家家户户的爆竹烟花声,就是为了驱赶“年”这种怪物。
中国民间有“开门炮仗”一说。即在新的一年到来之际,家家户户开门的第一件事就是烧烟花炮竹,以哔哔叭叭的烟花爆竹声除旧迎新。烟花炮竹是中国特产,亦称“爆仗”、“爆竹”、“炮仗”、“鞭炮”。
烟花是一种美妙绚丽吉庆之物。它寓意这各种喜庆,吉祥,宏伟,欢乐,热情的场面和心情。
一般寓意:一飞冲天,一炮而红;此外不同种类烟花寓意不同。“绿色拉手”烟花,就像拱手般向各位拜年。 “金元宝”烟花,好像财神从天空洒金元宝到地上。
百花齐放,欣欣向荣。 红、粉红、草绿、橙及蓝色带等闪烁烟花,寓意洗涤疲惫心灵,身心康泰。“红暗绿纺”及“红暗银纺”的烟花,就好像大地初开,寓
烟花是绚丽的,但它不是文静的,当它冲出匣子的那一刻,它就是一个诡秘的魔术师,把匣子里的化学成分变成美丽的炮竹,让人们看到它的美,看到它的绚丽。 同时,它也想吸引很多人,让大家都来看看它多么的自信,多么的快乐,多么的美丽!
烟花绽放的瞬间的意义
这一刻是就是人们所说的花火
花火虽然生命短暂,却发绽放出了灿烂的光芒,证明了自己的存在
从这一层面上看,花火代表了一种勇于牺牲,在烈火中永生的精神,在纪念烈士十分恰当
但是客观的说,作为一个存在于世间的事物,花火的瞬间并不能留下一些永远的东西,而且还会带去愿望与希望。就如昙花一现所说,仅仅能够暂时站在平凡之上,却会永恒的.沉没在消逝之中其实,淡泊就可以明志,宁静终会致远。
放烟花的寓意和象征
过年放鞭炮的寓意和象征是什么
从古代传统文化看来新年的时候放鞭炮是因为传说中有一位老人用爆竹吓跑了为祸人的“年”这个怪物,由此流传出春节的时候放鞭炮的传统,以求达到趋吉避凶、镇宅保平安的效用,虽然在现在看来这种说法有些过时,但是在古代物质贫乏时期,这是人们对于新的一年最美好的期盼,寄托着人们的丰富的思想内涵。
从现代社会文化看来新年的时候燃放鞭炮则多是象征着在未来一年的生活中运势红火、家庭兴旺,因为鞭炮都为红色,燃放时候的响声也是非常的悦耳,从而使得家中喜事连连、好运常伴,虽然从科学的角度来说这种做法有些唯心主义,但是这是人们的精神寄托和文化传承,是人们对于新的一年最淳朴的祈愿。
过年放鞭炮的象征
1、团圆饭饭前响鞭炮,寓意团团圆圆。
团圆饭前放鞭炮,其实是由来已久的民间旧俗,除日,更桃符、换春联,结彩,响爆竹,鸣金鼓,设斗斛,插冬青、梅花于其中。是夕,祀内外神,少长以次行辞年礼。”这一挂鞭炮的响声其实是表达人们一年结束后团聚的喜悦心情。
2、关财门放完鞭炮闭门,寓意财不外流。
除了吃团圆饭,除夕当天还有一个时刻,让人们至今保持着放鞭炮的传统,那就是晚上12点“关财门”的习俗。但是这一习俗到后来演变成为了人们表达对美好生活的追求,希望能够招财进宝,拥有丰厚物质生活的保障或享受。
本文关键词:放烟花的寓意和象征意义,放烟花象征什么,放烟花的寓意和象征知乎,过年放烟花的寓意和象征,放烟花的寓意和象征英语作文。这就是关于《放烟花的寓意和象征,放烟花 寓意(零起步数学+神经网络入门)》的所有内容,希望对您能有所帮助!