大家好,本篇文章为大家解答以上问题,相信很多人对数学期望是啥子都不是特别的了解,因此呢,今天就来为大家分享下关于数学期望是啥子以及数学期望的数学期望是什么的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
本文目录一览
1、“数学期望”指的是什么?2、数学期望是什么?“数学期望”指的是什么?
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率消祥乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。
以大数据眼光看问题体现了数学期望中的大量试验出规律,不能光看眼前或特例,对一种现象不能过早下结论,要多听、多看从而获得拿个隐藏在背后的规律;
以大概率眼看光问题对应数学期望中的概率加权,大概率对应的取值对最后之结果影响大,所以当有了一个目标,为了实现它,就要找一条实现起来概率最大的路径。
扩展资料
应用:
1)随机炒股
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股
趋势炒股是建立在惯性理论上的,胜率跟经验有很孙桥塌大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。
只有止损线<15%时,趋势投资才有可能赢。但是止损线过低,就会形成频繁交易,一方面交易成本增加,另一方面交易者的判断则圆力下降,也就是胜率必然下降,那么最终的下场好不到哪去。
3)价值投资
由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。
参考资料来源:百度百科-数学期望
数学期望是什么?
离散型随机变量X取可列个值时,它的数学期望要求级数∑|xi|pi收敛,否则数学期望不存在; 连续型随机变量若在无限区间上取值,其数学期望是一个广义积分,要求积分绝对收陪猜败敛,否则数学期望不存在.例如:柯西分布的数学期望EX就不存在。
数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定兆春包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
扩展资料:
数学期望的应用
1、经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。
若供芦颤不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
2、体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。
现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利?
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
参考资料来源:百度百科-数学期望