您当前的位置:首页 > 时尚 > 内容

结构健康监测

大家好,小编为大家解答结构健康监测系统设计标准的问题。很多人还不知道结构健康监测的背景和意义,现在让我们一起来看看吧!

结构健康监测的相关图片

大型桥梁结构健康监测技术研究与应用?

一、现代大型桥梁健康监测技术的概念。

大型桥梁结构健康监测实际上是一个多参数(包括温度、应力、位移、动力特性等)的监测。所谓配镇穗大型桥梁结构健康监测技术就是指利用一些设置在大型桥梁关键部位的测试元件、测试系统、测试仪器,实时、在线地量测大型桥梁结构在运营过程中的各种反应,并通过对这些大型桥梁结构关键部位的测试数据的现场采集、数据与指令的远程传输、数据储存与处理、结构安全状态的评估与预警等一系列程序,分析大型桥梁结构的安全状况、评价其承受静、动态荷载的能力和结构的安全可靠性,为运营及管理决策提供依据.。

大型桥梁结构健康监测技术涉及多个学科交叉领域,随着现代检测技术、计算机技术、通讯技术、网络技术、信号分析技术以及人工智能等技术的迅速发展,大型桥梁结构健康监测技术正向实时化、自动化、网络化的趋势发展。目前,包含多项检测内容、能对大型桥梁状态进行实时监测,并集成了远程通信与评判控制的健康监测系统,已经成为大型桥梁健康监测技术发展的前沿.。

大型桥梁结构健康监测技术主要包括监测系统总体设计技术、传感器及其优化布设技术、数据自动采集与传输技术、结构仿真分析技术、健康诊断与结构安全评估技术等。

二、大型桥梁结构健康监测系统总体设计技技术。

大型桥梁结构健康监测系统是集结构监测、系统辨识和结构评估于一体的综合监测系统。通常采旅运用各种先进的测试仪器设备对大型桥梁在外界各种激励(包括交通荷载、环境荷载等)下的各种响应进行监测;然后对监测到的各种信息进行处理,结合结构模型等知识对结构进行诊断,分析结构的损伤状况;最后对大型桥梁结构的健康状态进行评价,并确定科学的大桥维修、养护策略。其监测内容一般包括。

1)大型桥梁结构在正常环境与交通条件下运营的物理与力学性能响应,包括各种荷载下的内力(应力)、变形、固有频率、模态、混凝土的碳化、钢筋的锈蚀等。

2)大型桥梁重要非结构构件(如支座)和附属设施的工作状态;。

3)大桥所处环境条件等。

大型桥梁结构健康监测是运用现代的传感与通讯技术,实时监测大型桥梁运营阶段在各种环境荷载条件下的结构响应与行为,对于具体的一座大型桥梁的监测系统设计,由于其本身的结构特点和监测重点的不同,其相应的监测方法、内容、规模、监测效果也各不相同,但总体上应遵循以下设计准则:。

1、系统功能要求

不同的功能目标所要求的监测项目不尽相同。绝大多数大跨度大型桥梁结构监测系统的监测项目都是从结构监控与评估出发的。如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所需要的信息。一般来说,对于大跨度索支承大型桥梁,需要较多的传感器布置于桥塔以及加劲梁以及缆索、拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测。

另外,在支座、挡块以及某些联结部位需安设传感器获取反映其传力、约束状况等的信息。因此大型桥梁结构健康监测系统的功能应考虑以下几个主要方面:。

1)结构整体行为方面:包括研究结构在车桥共同作用、强风、强地面运动下的非线性特性以及桥址处环境条件变化对结构动力特性、静力状态(内力分布、变形)的影响等。

2)结构局部问题:例如边界、联接条件,钢梁焊缝疲劳及其它疲劳问题;结合梁结合面的破坏机制;索支承大型桥梁缆(拉)索和吊杆的振动局部损伤机制。

培卜3)抗震方面:包括各种场地地面运动的空间与时间变化、结构相互作用、多点激励对结构响应的影响等,通过对墩顶与墩底应变、变形及加速度的监测进行大型桥梁抗震分析等。

4)抗风方面:包括风场特性观测、结构在自然风场中的行为以及抗风稳定性。

此外,也应重视结构耐久性问题、基础变形规律、桩基的承载力等问题。

2、效益/成本分析

监测系统的设计首先应该考虑建立该系统的目的和功能,对于特定的大型桥梁,建立结构健康监测系统的目的可以是大型桥梁监控与评估,或是设计验证,甚至以研究发展为目的。一旦建立系统的目的确定,系统的监测项目就可以基本上确定,也就可以确定其功能的设计要求。但由于监测系统设计过程中各监测项目的规模以及所采用的传感仪器和通信设备等的确定需要考虑投资的限度,因此在设计监测系统时必须对监测系统方案进行成本/效益分析。根据功能要求和成本/效益分析将监测项目和测点数量设计到所需的范围内,以便最优化地选择安装系统硬件设施。

三、传感器及其优化布置技术

传感器的选择主要考虑以下几个方面的因素:传感器类型的选择以及传感器的精度、分辨率、频响及动态范围;传感器布设位置以及其周围动态环境的影响程度、测量噪声的影响程度等。

大型大型桥梁健康检测、监测过程中应用的传感器主要用来测量加速度、速度、位移及应变等参数,由于大型桥梁结构尺寸庞大,同时自振频率往往非常低,结构的响应水平通常也非常小,因此,要求传感器必须具有频响范围广、低频响应好、测量范围大的特点。传统的传感器有压电式力传感器、加速度传感器、阻抗传感器、应变片等,它们己广泛应用于各类工程结构的实测中,这里不再赘述.。

目前新兴的传感器主要有:疲劳寿命丝、压电材料传感器、碳纤维、半导体材料和光纤传感器等。

光纤传感器是随着光纤通讯技术的蓬勃发展而涌现出来的一种先进的传感器,是用于长期监测的最理想材料。其主要性能特点包括:。

1)具有感测和传输双重功能;抗电磁干扰、电绝缘、耐腐蚀,本质安全可靠,耐久性好;灵敏度高;重量轻、体积小、可挠曲,对被测介质影响小;。

2)便于复用、成网,有利于与现有光通信技术组成遥测网和光纤传感网络;。

3)测量范围广。可测量温度、压强、应变、应力、流量、流速、电流、电压、液位、液体浓度、成分等。

四、大型桥梁结构健康监测系统总体设计。

现代大型桥梁结构健康监测技术不只是传统的大型桥梁检测技术的简单改进,而是运用现代传感与通信技术,实时监测大型桥梁运营阶段在各种环境条件下的结构响应与行为,获取反映结构状况和环境因素的各种信息,并由此分析结构的健康状况、评估结构的可靠性,为大型桥梁的管理与维修决策提供科学依据.。

1监测系统的组建

2监测系统的设计原则

1)目的与功能的主辅原则

监测系统的设计应该以建立该系统的目的和功能为主导性原则,建立健康监测系统的目的确定后,则系统的监测项目和仪器系统就可基本确定。一般而言,建立大型桥梁健康监测系统的主要目的是掌握结构的运营安全状况,因此健康监测系统的设计应首先考虑以结构安全性为主的监测原则,是能够关乎结构安全与否的重点监测内容,而其它目的则为辅助性的。

2)功能与成本最优原则

健康监测系统的成本通常比较大,其成本一般由三大部分组成:结构仿真分析费用、仪器系统费用及处理软件费用。结构仿真分析部分费用一般较小,但其意义重大。仪器系统是健康监测系统成本的主要部分,监测项目及传感器数量越多,监测信息就越全面,从而系统成本就越高;反之则降低系统成本,但同时可能会因为监测信息不足而使监测数据有效性减小。所以为使系统成本更合理,有必要对功能与成本进行优化,使用最小的投资,获得最大的有效监测信息。信息处理软件费用,其主要功能是对巨量信息进行解释、存储、传输及初步评价等,

该部分费用相对也比较小。

3)系统性和可靠性原则

监测分析、仿真计算、工程经验有机结合,也只有用系统分析原理,使测点之间、监测项目之间能相互结合,从而提高整个系统的监测功效;监测系统最基本的要求是可靠性,而整个系统的可靠性取决于所组成的各种仪器的可靠性、监测网络的布置及设计的统筹安排和施工上的配合等因素。

4)关键部件优先与兼顾全面性原则。

关键部件是指各种原因导致的可能破坏区、变形敏感区及结构的关键部位,这些关键部件都必须重点监测。但也应考虑全面性,考虑对结构整体性进行监测,例如基础的总体安全性监控等。

5)实时与定期监测结合原则

根据监测目的、功能与成本优化确定监测项目后,应该考虑的是实时监测与定期监测分别设置的原则。由于监测项目的不同,有些项目不必长期实时监测,但其监测频率又远高于人工监测,这时可考虑采用定期监测,以减少后期维护成本和数据处理压力。

交通运输是一个国家的经济命脉,而大型桥梁是交通的咽喉,大型桥梁的建造和维护是一个国家基础设施建设的重要组成部分,同时也是经济发展与技术进步的象征。本文简要分析了大型桥梁的健康系统的设计,希望对同行以帮助。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd。

土木工程结构健康监测系统的研究现状及进展?

1引言

目前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,造成了重大的人员伤亡和财产损失,已经引起人们对于重大工程安全性的关心及重视。另外,我国有一大部分桥梁和基础设施都是在20世纪五六十年代建造的,经过这么多年的使用,它们的安全性能如何?是否对人民的生命财产构成威胁?这些都是亟待回答的问题。近些年,地震,洪水、暴风等自然灾害也对这些建筑物和结构造成不同程度的损伤;还有一些人为的爆炸等破坏性行为,如美国世贸大楼倒塌对周围建筑物的影响。这些越来越引起人们的密切关注。

对重大工程结构的结构性能进行实时的监测和诊断,及时发现结构的损伤,并评估其安全性,预测结构的性能变化和剩余寿命并做出维护决定,对提高工程结构的运营效率,保障人民生命财产安全有极其重大的意义,已经成为现代工程越来越迫切的要求,也是土木工程学科发展的一个重要领域。结构健康监测系统可以实时采集反结构服役状况的相关数据,采用一定的损伤识别算法判断损伤的位置与程度,及时有效地评估结构的安全性,预测结构的性能变化并对突发事件进行预警,因而可以较全面地把握结构建造与服役全过程的受力与损伤演化规律,土木是保障大型工程结构隐建造和服役安全的有效手段之一。

2健康监测系统的基本概念

结构健康签测(structuralhealthmonitoring,SHM)是指利用现场的无损传感技术,分析通过包括结构响应在内的结构系统特性,达到检测结构损伤或退化的一些变化。

损伤识别:工程结构一般会受到两种损伤,即突然损伤和积累损伤。突然损伤由遭地震、洪水、飓风、凳局爆炸等严重的自然或人为灾害等突发事件引起,而积累损伤则一般是结构在经过长时期使用后缓慢累积的损伤,具有缓慢积累的性质。对于损伤识别的目标,有工程师提出了损伤检测的5个层次:判断结构中是否有损伤产生,损伤定位,识别损伤类型,量化损伤的严重程度,评估结构的剩余寿命。理想的损伤识别方法应该具备的另一重要性能是,能够区分结构建模误差引起的偏差与结构损伤引起的偏差间的区别。

安全性评佑:结构安全性评估是基于健康监测和损伤识别的基础上,通过各种可能的、结构允许的测试手段,测试其当前的工作状态,并与其临界失效状态进行比较,评价其安全等级。对予不同的结构,其重要程度不同,安全等级也应该有所差别。安全性评估与可靠性不同,可靠性为一种概率,一种可能性;而安全性评估旨在给出确定的安全等级。

3结构健康监测系统组成及其功能分析。

结构的健康监测是一种实时的在线监测技术。一般健康监测系统包括以下几个部分:

 枣段让 (1)传感器子系统。传感器子系统为硬件系统,功能为感知结构的荷载和效应信息,并以电、光、声、热等物理量形式输出。该子系统是健康监测系统最前端和最基础的子系统。

(2)数据采集与处理及传输子系统。包括硬件和软件两部分,硬件系统包括数据传输电缆/光缆、数模转换(A/D)卡等;软件系统将数字信号以一定方式存储在计算机中,数据采集通用软件平台有VisualBasic,VC++,Delphi,LabWindows或LabView等。采集的数据经预处理后存储在数据管理子系统中,数据采集子系统是联系传感器子系统与数据管理子系统的桥梁。

(3)损伤识别、模型修正和安全评定与安全预警子系统,由损伤识燃帆别软件、模型修正软件、结构安全评定软件和预警设备组成。在该系统中,一般首先运行损伤识别软件,一旦识别结构发生损伤,即运行模型修正软件和安全评定软件。若出现异常,则由预警设备发出报警信息。损伤识别软件通常由计算分析软件平台开发,如MATLAB等;模型修正和安全评定软件一般是结构分析软件,如ANSYS和结构分析设计专门软件等。损伤识别是在结构反应信息基础上进行的,结构反应信息由数据采集子系统采集后存储在数据管理子系统中。因此,损伤识别软件运行时,首先能够从数据管理子系统中自动读取结构反应信息数据。损伤识别和模型修正以及安全评定的结果将作为结构的历史档案数据存储在数据管理子系统中。因此,损伤识别和模型修正以及安全评定的结果将能够自动存入数据管理子系统中。

(4)数据管理子系统,它的核心为数据库系统。数据库管理结构建造信息、几何信息、监测信息和分析结果等全部数据,它是结构健康鉴测系统的核心,承担着健康监测系统的数据管理功能。

4结构健康监测系统在国内外的应用情况。

在国外,结构健康监测系统已有较多的应用,除应用于大跨桥梁外,已经开始应用到高层复杂建筑的监测。日本的明石海峡大桥为主跨1991m的3跨双铰悬索桥,于1998年4月5日通车,是本州一四国联络线桥。该桥抗震设计要求可以抵抗距震中150km的里氏8.5级地震,抗风设计的设计风速在桥面处为60m/s。明石海峡大桥的建造采用了最新的抗风、抗震设计法,所以不仅必须检验设计时的假定,而且还要检验结构在强风和强震中的一些相关常数。另外需要监控其基本结构特性,即在正常状态中温度和其它条件发生变化时桥梁的行为。为调查这些项目,安装了一套监控系统。在观测中,采用GPS来监测梁和塔的变形。

在国内,近几年结构健康监测系统的应用逐渐增多,但由于健康监测系统集成技术复杂,成本昂贵,我国的健康监测系统多应用于大跨桥梁。虎门大桥位于珠江入海口,是连接珠江三角洲东西两翼的交通枢纽工程。虎门大桥全长4606m,主桥是跨径888m的悬索桥,主梁采用扁平闭口流线型截面钢箱梁。由于虎门大桥位于热带风暴多发地区,所以对桥梁的安全问题需要特别考虑和重视。广东虎门大桥有限公司、清华大学土木工程系和广州大地兴科技仪器有限公司研究开发了虎门大桥健康监测系统。该系统主要包括虎门大桥三维位移GPS实时动态监测系统和虎门大桥应变监测数据处理系统。

5存在的问题及发展方向

本文阐述了土木工程结构健康监测的基本概念、健康监测系统组成和功能、以及目前的研究应用现状,重点讨论了健康监测系统组成中的一些关键问题。就现在结构健康监测及诊断的研究发展水平来看,仍然存在以下几个尚待解决的问题:

(1)对结构健康状态的评价缺乏通用有效的损伤量化指标。在基于振动的损伤诊断中,要求测得的损伤状态的信号应与原始的健康状态的信号有明显的差异,能够准确地区分出结构的损伤状态和健康状态。当前存在的一个矛盾是,结构的自振频率可准确测量,但自振频率对局部损伤不敏感;振型(尤其是高阶振型)变化对局部损伤敏感,但却难以精确测量。因此,应该提出一种通用有效的损伤量化指标(或是针对某一类结构比较有效的动力指纹),把结构的健康状况进行简单的分级量化。

(2)由于大型土木工程结构都是复杂非线性系统,而神经网络和遗传算法具有不需要知道系统的精确模型就可进行相应运算的特点,因此在结构的健康监测和诊断方面具有广阔的应用前景。小波分析由于有刻画细节的能力,在数据的处理方面也具有一定的优势。但各个方法均有其缺陷和局限性,综合使用几种方法有时会获得更好的分析效果。

(3)传感器的优化布设是土木工程结构健康监测和诊断中的一个重要问题,出于对经济和结构运行状态等因素的考虑,应该做到使用尽量少的传感器获取尽可能多的结构信息。

(4)微波等无线通讯技术将是结构健康监测的重要发展方向,无线监测系统可以大大减少结构上信号线的安装数量,节约成本,不必担心信号线的老化对信号采集的影响,具有广阔的应用前景。

(5)结构健康监测系统的研究是近年来土木工程领域发展的重点课题,但目前结构健康监测系统的设计与开发还缺乏统一的标准或规程。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd。

结构健康检测中采集的数据怎么看

笔者未仔细查询桥梁结构健康监测具体发展时间线,参考了同济大学孙利民教授的论文[1]。

图1 大数据、人工智能、SHM时间轴。

其实到现在,话还是说多了。结构健康监测系统的数据获取是第一步。

在桥梁结构健康监测系统中,实测得到的桥梁结构响应信号的主要为。

R=F(t,T,D,L,S,O)。

式中, F(⋅) 代表函数关系式; t 为时间作用; T 表示温度作用; D 表示结构恒载作用; L 表示活荷载作用; S 表示测试误差作用; O 表示其他作用。

从数据分析角度而言,结构健康监测数据则主要关注结构恒载作用D,因此在分析过程中,主要遵循以下原则:

原则一:从 R 中尽量消除干扰因素影响,直接对所关注的结构恒载作用成分D进行分析;

原则二:在干扰因素难于有效消除时,考虑保留其影响,分析在相同环境影响下所关注的结构恒载作用成分D的变化。

在对上述监测信号的分析之下,桥梁监测数据往往需要需要对其进行预处理[2],这一步的作用主要目的有若干个:

一定程度上能够消除因设备干扰或其它瞬时荷载引起的尖峰数值,提高信噪比;

等间隔采样处理。

便于后续信号分析处理。

图2 预处理流程

为便于理解,笔者结合相关规范,对上述监测数据预处理流程进行描述,桥梁结构监测规范[3]部分参数采样频率要求如下图所示。

图3 环境监测内容采样频率表

以环境监测内容中的温度为例为例,规范中要求采样频率≤1/600 Hz,按最低标准1/600Hz(10min/次)对数据进行采样,若采集仪按10min/次对温度进行采集,在传感器采集数据过程中,随机效应存在于传感器的整个采样过程,加之周边各种因素的影响,温度传感器数据可能表现为尖峰值,偏离真实环境的监测值。

监测数据中的随机效应噪声可似高斯噪声,按一定时间段的监测数据取平均值或取中值来消除随机效应影响,由于诸多桥梁结构健康监测参数(挠度、应变、倾斜、裂缝等)的监测值均与温度有很大的关系,考虑原则一和原则二的基础上,其中温度在10min内变化较小,因此可对监测数据按10min取中值/均值得到温度监测量,对于其余结构健康监测参数(挠度、应变、倾斜、裂缝等),则考虑与其他监测参数的影响,可将其按10min取中值/均值的方式得到监测量。

采集仪采集监测数据流程:监测数据展现为1/600Hz,若采集设备设定采样频率为1/60Hz,则温度传感器在10min内,理论可采样10次,受采集设备通信网络影响,渣含余采样数据可能为0~10次,取10min内监测数据的中值/均值作为有效监测数据。

图4 监老御测数据采样方式

在上述采集流程中,仍存在问题:监测数据的时间前后可能相差0~20min,若按中值取,则该10min内取的数据应为所取中值对应的时间,则第一次的数据可能为0~10min,则第二次的数据可能为11min~20min,则两次监测数据的时间相差可能为0~20min,若按均值取,则对应时间则难以进行确定。

从理论分析而言,若监测数据通过上述进行处理后,则监测数据可以表现为。

R=F(t,T,D,L′,S′,O′)。

式中,L′ 表示残余活荷载作用; S′ 表示残余测试误差作用; O 表示残余荷载作用,可近似忽略,则可简化为 。

R=F(t,T,D) 。

因此,监测数据则主要受温度的影响变化,由于在监测数据上,环境温度近10min内变化不大,因此可认为遵循原则二。

因此,在上述采集流程中存在的问题可视,温度与诸多桥梁结构健康监测参数(挠度、应变、倾斜、裂缝等)的监测值在10min内的值可近似等同于同一时间,即做到同时同频。

以上是笔者的一些个人见解,主要针对桥梁结构健康监测数据中的静态监测如滚数据的预处理过程,由于动态监测频率较高,可采用其他信号分析方法进行处理。

结构健康自动化监测系统的构成?

结构健康自动化监测系统主要由新型传感器、多功能网关、云服务器组成的安锐测控平台,通过各类传戚毕感器设备安装高困芹在结构关键部位进行实时监测,数据接入到采集网关,采集网关初步运算后通过4G无线网络将数据输出到云服务器,云服务器将数据进行分析处理后下发到后端监测平台,实现数据协同、及时预警、联动控制的信息自动化监测预尺逗警系统。

结构健康监测由谁组织进行

桥梁工程纤弊纤师。结构健康监测指的是针毁仿对工程结构的损伤识卜敏别及其特征化的策略和过程,结构损伤指的是结构材料参数及其几何特征的改变,结构健康监测由桥梁工程师组织进行。

1、 结构健康监测的概念及其研究内容是什么?

结构健康监测是指对工程结构实施损伤检测和识别。

结构健康监测涉及到通过分析定期采集的结构布置的传感器阵列的动力响应数据来观察体系随时间推移产生的变化,损伤州链饥敏感特征值的提取并通过数册返据分析来确定结构目前的健康状态。对于长期结构健康监测,通过数据定期更新来估计结构唤链老化和恶劣服役环境对工程结构是否有能力继续实现设计功能。

什么是结构健康监测SHM,用什么仪器测

结构健康监测(Structural Health Monitoring,简称SHM)是指利用现场的无损传感器技术,通过对包括结构响应在内的结构系统特性分析,达到监测结构损伤或退化的目的。

目前,在大坝监测、大型桥梁监测、大型建筑物监测方面都受到很大的重视,特别是在地震影响下,需要检测震后的影响。

这种监测系统一般由数据采集仪,无线传感器,数据处理软件和应对事件系统组成。推荐瑞士GeoSIG公司的强震仪和结构健康监测系统。

它为瑞士原装生产,质量有保证。产品在地震观测,结构监测方面应用广泛。而且操作方便,性能稳定,并能兼容其他公司的产品,可以满足各类监测需求。

咨询国内代理商欧美大地公司,关于产品信息和整个监测的解决方案。

结构健康监测的监测简介

对于健康监测对结构的损伤识别能力,实用性评估涉及到四个方面:

(1)结构健康监测的应用对于生命安全和经济效益有什么好处?

(2)怎样对结构进行损伤定义,多重损伤同时存在的可能性,哪种类型最值得关注?

(3)什么条件下(不同用途、不同环境)的体系需要监测。

(4)使用过程中采集数据的局限性。

使用环境对监测的体系和监测过程的完成形成限制条件。 这种评估开始将损伤识别的过程和损伤的外部特征联系起来,当然也用到独特的损伤特征来完成检测。 结构健康监测的数据采集部分涉及到选择激励方法、传感器类型、数量和布置,以及数据采集、存储、传输设备。经济效益是选择方案一个重要的参考因素,采样周期是另一个不可忽视的因素。因为数据可在变化的环境中获取,将这些数据正规化的能力在损伤识别过程中变得非常重要。当应用于结构健康监测时,数据正规化是一个分离出由于环境或操作而导致的传感器测得的不准确的数值。最常见的方法是通过测量输入参数来正规化测得的响应。当环境或操作影响比较显著时,我们需贺滚要来对比相余拍圆似时竖塌间段的数据或对应的操作周期。数据的不稳定性的来源需要认识到并把它对系统监测的影响降到最低。总的来说,不是所有的影响因素都可以消除,因此,我们有必要才去适当的措施来确保这些无法消除的因素对监测系统的影响作用大小。数据的不稳定性会因为变化的环境因素、测试条件以及测试的不连续性而加剧。

数据提纯是一个筛选部分有价值数据以完成传递的过程,与特征提取的过程相反。数据提纯很大程度上基于个人相关数据采集的经验。举例来说,通过检查测试设备的安装或许会发现某个传感器的固结已经松动,因此基于个人经验可以在数据处理的过程中删除获取的这组数据或某个特定传感器测得的数据。数据处理技术,比如滤波和重构,也是一种不错的数据提纯方法。

总之,结构健康监测过程中的数据采集、正规化和提纯技术在不断前进。特征提取过程的进一步认识和数据模型的不断完善都将有助于数据采集技术的进步。 结构健康监测领域中最受关注的莫过于通过数据特征如何辨别出损伤结构与完好结构。数据压缩包含于这个特征选择过程,最有效的损伤识别的特征还是。

基于相关测试系统的相应量(比如现场测得的振动谱或频率)是最常用的特征之一。另一个损伤识别方法是寻找与特定损伤敏感的因素,即某个结构体系在某特定环境下的损伤与某种参数最原始的定义相对应。这种模拟损伤的系统是一种非常有效的工具。分析工具的应用也起到非常重要的作用,比如试验验证的有限元模型。分析工具通常用来进行数值模拟试验,通过计算机设置来模拟真实结构的损伤。通过观测承受荷载的结构体系关键部件的老化得到的损伤累计测试也可用于识别某些损伤。这个过程涉及到加速损伤测试、疲劳测试、腐蚀、和温度循环对某种类型损伤的积累。上文提到的多种类型的分析和试验研究或多种研究方法的有机结合可加深对某些损伤特征的认识。 通过统计模型来辨别结构是否存在损伤,是结构健康监测领域文献中涉及最少的一部分。统计模型关注如何评估结构的损伤状态的算法的使用,统计模型中用到的算法通常分为3种:当完好结构和有损伤的结构的数据都可获取时,模式识别算法通常使用与有参照的研究有关的整体分类,整体分类和回归分析法都属于有参照研究的范畴;无参照研究指的是缺乏损伤结构的数据;新型的检测技术(或引用自其他行业比较成熟的技术)是一种应用于无参照研究中的基本算法。所有的算法(分析统计或提纯优化)都推动损伤识别技术的提升。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 图形找规律 圆圈三角形(圆圈三角形找规律)

下一篇: 香膏用法介绍,香膏怎么用(让你不再被叫做“臭男人”)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号