您当前的位置:首页 > 时尚 > 内容

linux内核详解(为什么要编译linux内核)

各位网友们好,相信很多人对pnux内核详解都不是特别的了解,因此呢,今天就来为大家分享下关于pnux内核详解以及为什么要编译pnux内核的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录一览

1、Linux 内核驱动接口详解

2、Linux内核中sk_buff结构详解

Linux 内核驱动接口详解

写作本文档的目的,是为了解释为什么Linux既没有二进制内核接口,也没有稳定 的内核接口。这里所说的内核接口,是指内核里的接口,而不是内核和用户空间 的接口。内核到用户空间的接口,是提供给应用程序使用的系统调用,系统调用 在 历史 上几乎没有过变化,将来也不会有变化。我有一些老应用程序是在0.9版本 或者更早版本的内核上编译的,在使用2.6版本内核的Linux发布上依然用得很好 。用户和应用程序作者可以将这个接口看成是稳定的。 你也许以为自己想要稳定的内核接口,但是你不清楚你要的实际上不是它。你需 要的其实是稳定的驱动程序,而你只有将驱动程序放到公版内核的源代码树里, 才有可能达到这个目的。而且这样做还有很多其它好处,正是因为这些好处使得 Linux能成为强壮,稳定,成熟的操作系统,这也是你最开始选择Linux的原因。 只有那些写驱动程序的“怪人”才会担心内核接口的改变,对广大用户来说,既 看不到内核接口,也不需要去关心它。 既然只谈技术问题,我们就有了下面两个主题:二进制内核接口和稳定的内核源 代码接口。这两个问题是互相关联的,让我们先解决掉二进制接口的问题。 假如我们有一个稳定的内核源代码接口,那么自然而然的,我们就拥有了稳定的 二进制接口,是这样的吗?错。让我们看看关于Linux内核的几点事实: 对于一个特定的内核,满足这些条件并不难,使用同一个C编译器和同样的内核配 置选项来编译驱动程序模块就可以了。这对于给一个特定Linux发布的特定版本提 供驱动程序,是完全可以满足需求的。但是如果你要给不同发布的不同版本都发 布一个驱动程序,就需要在每个发布上用不同的内核设置参数都编译一次内核, 这简直跟噩梦一样。而且还要注意到,每个Linux发布还提供不同的Linux内核, 这些内核都针对不同的硬件类型进行了优化(有很多种不同的处理器,还有不同 的内核设置选项)。所以每发布一次驱动程序,都需要提供很多不同版本的内核 模块。 相信我,如果你真的要采取这种发布方式,一定会慢慢疯掉,我很久以前就有过 深刻的教训… 如果有人不将他的内核驱动程序,放入公版内核的源代码树,而又想让驱动程序 一直保持在最新的内核中可用,那么这个话题将会变得没完没了。 内核开发是持续而且快节奏的,从来都不会慢下来。内核开发人员在当前接口中 找到bug,或者找到更好的实现方式。一旦发现这些,他们就很快会去修改当前的 接口。修改接口意味着,函数名可能会改变,结构体可能被扩充或者删减,函数 的参数也可能发生改变。一旦接口被修改,内核中使用这些接口的地方需要同时 修正,这样才能保证所有的东西继续工作。 举一个例子,内核的USB驱动程序接口在USB子系统的整个生命周期中,至少经历 了三次重写。这些重写解决以下问题: 这和一些封闭源代码的操作系统形成鲜明的对比,在那些操作系统上,不得不额 外的维护旧的USB接口。这导致了一个可能性,新的开发者依然会不小心使用旧的 接口,以不恰当的方式编写代码,进而影响到操作系统的稳定性。 在上面的例子中,所有的开发者都同意这些重要的改动,在这样的情况下修改代 价很低。如果Linux保持一个稳定的内核源代码接口,那么就得创建一个新的接口 ;旧的,有问题的接口必须一直维护,给Linux USB开发者带来额外的工作。既然 所有的Linux USB驱动的作者都是利用自己的时间工作,那么要求他们去做毫无意 义的免费额外工作,是不可能的。 安全问题对Linux来说十分重要。一个安全问题被发现,就会在短时间内得到修 正。在很多情况下,这将导致Linux内核中的一些接口被重写,以从根本上避免安 全问题。一旦接口被重写,所有使用这些接口的驱动程序,必须同时得到修正, 以确定安全问题已经得到修复并且不可能在未来还有同样的安全问题。如果内核 内部接口不允许改变,那么就不可能修复这样的安全问题,也不可能确认这样的 安全问题以后不会发生。 开发者一直在清理内核接口。如果一个接口没有人在使用了,它就会被删除。这 样可以确保内核尽可能的小,而且所有潜在的接口都会得到尽可能完整的测试 (没有人使用的接口是不可能得到良好的测试的)。 如果你写了一个Linux内核驱动,但是它还不在Linux源代码树里,作为一个开发 者,你应该怎么做?为每个发布的每个版本提供一个二进制驱动,那简直是一个 噩梦,要跟上永远处于变化之中的内核接口,也是一件辛苦活。 很简单,让你的驱动进入内核源代码树(要记得我们在谈论的是以GPL许可发行 的驱动,如果你的代码不符合GPL,那么祝你好运,你只能自己解决这个问题了, 你这个吸血鬼把Andrew和Linus对吸血鬼的定义链接到这里>)。当你的代码加入 公版内核源代码树之后,如果一个内核接口改变,你的驱动会直接被修改接口的 那个人修改。保证你的驱动永远都可以编译通过,并且一直工作,你几乎不需要 做什么事情。 把驱动放到内核源代码树里会有很多的好处:

Linux内核中sk_buff结构详解

sk_buff是Linux网络中最核心的结构体,它用来管理和控制接收或发送数据包的信息。各层协议都依赖于sk_buff而存在。内核中sk_buff结构体在各层协议之间传输不是用拷贝sk_buff结构体,而是通过增加协议头和移动指针来操作的。如果是从L4传输到L2,则是通过往sk_buff结构体中增加该层协议头来操作;如果是从L4到L2,则是通过移动sk_buff结构体中的data指针来实现,不会删除各层协议头。这样做是为了提高CPU的工作效率。

skb_buff结构如下所示:

这里要声明两个概念的区别,后续直接用这两个概念,注意区分: (1)线性数据:head - end。 (2)实际线性数据:data - tail,不包含线性数据中的头空间和尾空间。 skb->data_len : skb中的分片数据(非线性数据)的长度。 skb->len : skb中的数据块的总长度,数据块包括实际线性数据和非线性数据,非线性数据为data_len,所以skb->len= (data - tail) + data_len。 skb->truesize : skb的总长度,包括sk_buff结构和数据部分,skb=sk_buff控制信息 + 线性数据(包括头空间和尾空间) + skb_shared_info控制信息 + 非线性数据,所以skb->truesize = sizeof(struct sk_buff) + (head - end) + sizeof(struct skb_shared_info) + data_len。

sk_buff结构体中的都是sk_buff的控制信息,是网络数据包的一些配置,真正储存数据的是sk_buff结构体中几个指针指向的数据区中,线性数据区的大小 = (skb->end - skb->head),对于每个数据包来说这个大小都是固定不变的,在传输过程中skb->end和skb->head所指向的地址都是不变的,这里要注意这个地址不是本机的地址,如果是本机的地址那么数据包传到其他主机上这个地址就是无效的,所以这个地址是这个skb缓冲区的相对地址。

线性数据区是用来存放各层协议头部和应用层发下来的数据。各层协议头部相关信息放在线性数据区中。实际数据指针为data和tail,data指向实际数据开始的地方,tail指向实际数据结束的地方。 用一张图来表示sk_buff和数据区的关系:

这一节介绍先行数据区在sk_buff创建过程中的变化,图中暂时省略了非线性数据区:

2.1中所讲的都是线性数据区中的相关的配置,当线性数据区不够用的时候就会启用非线性数据区作为数据区域的扩展,skb中用skb_shared_info分片结构体来配置非线性数据。

skb_shared_info结构体是和skb中的线性数据区一体的,所以在skb的各种操作时都会把这两个结构看作是一个结构来操作。如:

skb_shared_info结构:

非线性数据区有两种不同的构成数据的方式 (1)用数组存储的分片数据区,采用是是结构体中的frags[MAX_SKB_FRAGS] 对于frags[]一般用在当数据比较多,在线性数据区装不下的时候,skb_frag_t中是一页一页的数据,skb_frag_struct结构体如下:

下图显示了frags是怎么分配分片数据的:

(2)frag_pst指针来指向的分片数据:

参考:


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 优雅的写信开头结尾(优雅文艺的写信结尾)

下一篇: 四川省(scs)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号