您当前的位置:首页 > 美文摘抄 > 内容

质数合数(质数合数表100以内)

质数合数(质数合数表100以内)

为了正式定义质数,我将使用戈弗雷·哈罗德·哈代(G. H. Hardy)和爱德华·梅特兰·赖特(E. M. Wright)的经典数论书《数论导论》中定义的“改进”版本。

    图1:英国数学家戈弗雷·哈罗德·哈代和爱德华·梅特兰·赖特,著名的书《数论导论》的作者

    我们只考虑正整数。一个数p被称为素数,如果:

      p> 1:数字1既不是质数也不是合数。1不是质数的一个很好的理由是为了避免修改算术基本定理。这个著名的定理说:“整数只能用一种方式表示为质数的乘积。”假设1为质数,那么这个唯一性就会消失(例如,我们可以将3写成 1 x 3,1 x 1 x 1 x 3,1^12345 x 3,等等)。

      P除了1和P没有正因数

        图2:与合数相比,素数不能排列成矩形,只能是一条线

        素数的无限

        质数的数目是无限的。前几个素数是:2、3、5、7、11、13、17、19、23、29、31、37等等。“素数有无限个”这个重要定理的第一个证明是由古希腊数学家欧几里得提供的。

        瑞士伟大的数学家莱昂哈德·欧拉只用了基本微积分就证明了素数有无限多个。

          图3:前60个整数的π(x)的值由下面的式1定义

          我们首先考虑小于或等于某个x∈R的素数的个数,其中R表示实数集合:

            式1:小于或等于某个x∈R的素数。

            这个函数称为素数计数函数。我们可以随便给质数编号,但这里我们还是按数值递增的顺序给它们编号:

              式2:素数按递增顺序编号。

              现在考虑下面所示的函数f(x)=1/x。

                图4:函数f(x)=1/x

                该函数在区间[1,∞]内的积分是x的对数:


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 稀疏编码(头发稀疏如何改善)

下一篇: 场景速写(小型场景速写)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号