关于【一阶线性微分方程的通解公式】,一阶线性微分方程通解公式是什么,今天犇犇小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
内容导航:1、一阶线性微分方程的通解公式:一阶线性微分方程通解公式是什么2、一阶非齐次线性微分方程求解及应用举例1、一阶线性微分方程的通解公式:一阶线性微分方程通解公式是什么
y’+p(x)y=g(x)。
一阶线性微分方程可以写成y’+p(x)y=g(x)。形如y' P(x)y=Q(x)的线性微分方程称之为一阶线性微分方程,Q(x)称为随意项。一阶指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y’的次数为0或1。
其通解形式为
实际上公式:y'+Py=Q之通解为y=[e^(-∫Pdx)]{∫Q[e^(∫Pdx)]dx+C}中要求每一个不定积分都要算出具体的原函数且不再加C,其中C为常数,由函数的初始条件决定。
而本题∫Pdx=ax,但∫Q[e^(ax)]dx=∫f(x)[e^(ax)]dx中,因为有抽象函数f(x)无法算出具体的原函数,所以要用不定积分与变限积分的公式:∫f(x)dx=∫[a→x]f(t)dt+C,本题用此公式取上式的a=0,C换为C1,(当然被积函数也要换成本题的被积函数),令C=u(x),代入公式后C1+C换为C2再换为C。这样才能代入初始条件y(0)=0,求出C。
2、一阶非齐次线性微分方程求解及应用举例
本文主要内容:介绍一阶非齐次线性微分方程的通解的应用、特解求解举例,以及二阶微分方程可用该通解求解的情形。
一、方程通解公式
一阶非齐次线性微分方程的解析式为:y'+p(x)=q(x),
则其通解表达式如下:y=e^[-∫p(x)]dx{∫q(x)*e^[∫p(x)dx]dx+c}.
二、通解公式的实际应用
本例中,p(x)=2x,q(x)=4x.
本例中,p(x)=-1/x,q(x)=2x^2.
本例中,p(x)=1/x,q(x)=sinx/x.
本例中,先要将y'前面的系数x变形除后,得到:p(x)=1/x,q(x)=e^x/x.
本例中,p(x)=-a,q(x)=e^mx.
此例中,要反过来用一阶非齐次线性微分方程的通解公式,其中:p(y)=-3/y,q(y)=-y/2.
三、用公式求特解情况举例
本例中p(x)=1/x,q(x)=4/x,求满足y(x=1)=0时的特解。
本例中p(x)=(2-3x^2)/x^3,q(x)=1,求满足y(x=1)=0时的特解。
四、二阶微分方程可使用通式求解举例
y''+y'/x=4,此时先对y'按照通式公式来求解,再对y'积分求解得到y,通解中含有两个常数系数c1和c2,此时P=1/x,Q=4。
y''=y'+x,此时先对y'按照通式公式来求解,再对y'积分求解得到y,通解中含有两个常数系数c1和c2,此时P=-1,Q=x。
xy''+y'=lnx,此时先对y'按照通式公式来求解,再对y'积分求解得到y,通解中含有两个常数系数c1和c2,此时P=1/x,Q=lnx/x.
这就是关于《一阶线性微分方程的通解公式,一阶线性微分方程通解公式是什么(一阶非齐次线性微分方程求解及应用举例)》的所有内容,希望对您能有所帮助!