您当前的位置:首页 > 美文欣赏 > 内容

氮化镓半导体(氮化镓能用来做半导体材料吗)

本文目录

  • 氮化镓能用来做半导体材料吗
  • 氮化镓属于什么行业
  • 氮化镓有哪些特点可以制造哪些器件
  • 请问,氮化镓可以用来做半导体材料吗
  • 为什么氮化镓能够成为第三代半导体的核心材料啊
  • 氮化镓是什么样的材料用在哪些地方

氮化镓能用来做半导体材料吗

目前半导体第三代氮化镓材料无法制造出CPU芯片。个人观点认为,以后制造芯片的材料为目前美国人要求我国公开技术的量子处理器。这方面我国已经走到世界高科技前沿。到时候要彻底改变半导体及其应用方面唯有龙的传人而不是美国人了。美国人中没有中国人它什么都搞不出来。泱泱大国人才济济,中国加油引领世界。不过,现在阶段GaN材料的研究与应用仍然是全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。

氮化镓属于什么行业

属于半导体行业。

氮化镓是一种无机物,化学式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中。

材料应用

新型电子器件

GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。

光电器件

GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批量生产阶段,从而填补了市场上蓝色LED多年的空白。

以上内容参考 百度百科-氮化镓

氮化镓有哪些特点可以制造哪些器件

氮化镓有哪些特点?

氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。

可以制造哪些器件?

太远离生活的产品不说,采用氮化镓为材料基础做出的充电器,能够实现更好的功率,带来更小的体积。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,在充电器中的应用也逐步布局开来。

氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。

请问,氮化镓可以用来做半导体材料吗

三代半导体——氮化镓氮化镓(GaN),是由氮和镓组成的一种半导体材料,因为其禁带宽度大于2.2eV,又被称为宽禁带半导体材料,在国内也称为第三代半导体材料。氮化镓和其他半导体材料对比上图中我们可以看到,氮化镓比硅禁带宽度大3倍,击穿场强高10倍,饱和电子迁移速度大3倍,热导率高2倍。这些性能提升带来一些的优势就是氮化镓比硅更适合做大功率高频的功率器件,同时体积还更小,功率密度还更大。氮化镓的优异特性就如这次小米的快充一样,使得小米65W氮化镓充电器的尺寸仅为56.3mm x 30.8mm x 30.8mm,体积比小米笔记本标配的65W适配器还减小了约48%,约为苹果61W快充充电器的三分之一。为什么氮化镓快充头可以这么小巧?功率还这么大?这就是得益于氮化镓材料本身优异的性能,使得做出来的氮化镓比传统硅基IGBT/MOSFET 等芯片面积更小,同时由于更耐高压,大电流,氮化镓芯片功率密度更大,因此功率密度/面积远超硅基,此外由于使用氮化镓芯片后还减少了周边的其他元件的使用,电容,电感,线圈等被动件比硅基方案少的多,进一步缩小的体积,所以本次看到的氮化镓快充头,不仅体积小巧,但是还能提供更强大的功率输出。传统硅基功率器件和氮化镓MOS对比除了快充,氮化镓还有其他什么重要应用?氮化镓材料,目前有三个比较重要的方向,分别是光电领域,包括我们现在常见的LED,以及激光雷达和VCSEL传感器;功率领域,各类电子电力器件应用在快充头,变频器,新能源汽车,消费电子等电子电力转换场景;射频领域,包括5G基站,军事雷达,低轨卫星,航天航空等领域。为什么氮化镓快充电头这么贵?本次快充头中除了PD协议成本,其他硬件材料电容电感线圈电源管理IC等之外,相当一部分的成本来自于氮化镓MOS功率芯片。制造氮化镓MOS的原材料就是氮化镓单晶片,目前单晶2英寸就高达2万多元一片。商业方案中较多的使用硅基氮化镓外延片,但是价格也非常高昂,8英寸的硅基氮化镓也超过1万的售价,而且产能不足,很难买到。硅基氮化镓是同面积的硅片的30多倍。所以说过于昂贵的原材料导致了氮化镓芯片非常昂贵,最终传到到终端产品就看到高出普通充电头数倍的价格。氮化镓材料为什么如此昂贵?氮化镓是自然界没有的物质,完全要靠人工合成。氮化镓没有液态,因此不能使用单晶硅生产工艺的传统直拉法拉出单晶,纯靠气体反应合成。由于反应时间长,速度慢,反应副产物多,设备要求苛刻,技术异常复杂,产能极低,导致氮化镓单晶材料极其难得,因此2英寸售价便高达2万多。商业场景中,更多使用氮化镓异质外延片。什么叫氮化镓异质外延片?在氮化镓单晶衬底上长氮化镓外延层我们称为同质外延,在其他衬底材料上长氮化镓我们称为异质外延片。目前包括蓝宝石,碳化硅,硅等是氮化镓外延片主流的异质衬底材料。其中蓝宝石基氮化镓外延片只能用来做LED;硅基氮化镓可以做功率器件和小功率的射频;碳化硅基本氮化镓可以制造大功率LED、功率器件和大功率射频芯片。本次小米发售的快充头,就是硅基氮化镓做的功率器件的一个典型应用场景。为什么同是外延片,应用差异这么大?氮化镓外延片的用来制造器件有很多具体的指标,包括晶格缺陷、径向偏差、电阻率、掺杂水平、表面粗糙度、翘曲度等,在不同的衬底材料长的外延层晶体质量差别较大。其中氮化镓和3C碳化硅,有着非常接近的晶格体系,两者适配度非常高,超过95%,因此碳化硅衬底上长氮化镓外延,外延层质量非常好,可以用来做高端产品,包括大射频功率、大功率器件、大功率LED、激光雷达等。硅和氮化镓晶体适配度非常低,不到83%,因此硅上无法直接长外延层。需要长多道缓冲层来过渡,因此外延层质量水平就比碳化硅基差不少,因此硅基氮化镓只能用来做小功率射频,中小功率器件。蓝宝石基氮化镓,因为衬底材料的问题,无法应用到射频和功率领域,只能用作普通的LED灯。虽然都是氮化镓外延片,但是由于衬底材料的不同,外延层晶体质量差异较大,应用也不尽相同。蓝宝石片最便宜,硅基次之,碳化硅较贵,氮化镓最贵。

为什么氮化镓能够成为第三代半导体的核心材料啊

因为氮化镓具有很多独特的优势,比如说高电压、高功率、高禁带、高带宽等等,4英寸半极性氮化镓材料的量产,已经率先由利亚德参股的Saphlux公司完成了,未来发展可期啊。

氮化镓是什么样的材料用在哪些地方

氮化镓材料是第三代半导体材料。它具有高热导率,化学稳定性好,有很强的抗辐照能力,很多优质的光电子、高温大功率器件和高频微波器件都会用到它。据说,以先进的LED显示技术而著称的利亚德公司,就参股了能够量产氮化镓的企业Saphlux公司。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: sony蓝牙耳机app(索尼耳机怎么连接苹果手机 如何将索尼耳机连接苹果手机)

下一篇: 嗜酸乳杆菌的特色是(嗜酸乳杆菌的特色)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号