关于【氢能源动力汽车的优缺点】,新能源优点缺点和用途,今天犇犇小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
内容导航:1、加氢3分钟,续航800KM!丰田宣告:电动只是过渡,氢能才是未来2、氢能源动力汽车的优缺点:新能源优点缺点和用途1、加氢3分钟,续航800KM!丰田宣告:电动只是过渡,氢能才是未来
广汽丰田9月26日透露,丰田第二代MIRAI氢能豪华轿车将于今年年末以进口车方式导入广汽丰田渠道开启销售,首批限量引进50台。该车一次添加氢气约3分钟,可实现近800公里的长续航行驶。
丰田汽车一直致力于氢燃料汽车的发展,而对于纯电车型的发展不太上心,丰田汽车一直认为,纯电车型只是过渡产品,希望从混动车型直接过渡到氢燃料汽车,从前景来看,氢燃料汽车确实代表未来,但是在当下,氢燃料汽车的普及困难重重。纯电车型将必然作为,燃油车和氢燃料汽车之间的过渡产物,这一点是毋庸置疑的。
至于为什么说氢燃料汽车是未来?什么燃烧的副产物是水,加氢只需要3分钟,那都是次要的。从国家能源安全方面考虑,氢能的普及能彻底摆脱对于石油的依赖,我们不需要再远跨重洋去进口中东的石油,不需要担心马六甲海峡被“扼住咽喉”,只可惜很多人的目光,只能看见眼前的三米路,却看不到远方的星辰大海。
关于氢燃料汽车,很多人依然是一知半解,拿着高中化学的知识,来对氢燃料汽车来进行下定论,只可惜,他们未能进入到高等学府深造,不然他们高谈阔论的声音恐怕会更大。
氢燃料汽车就是氢弹?
冷知识,全球能制造氢弹的国家只有五个。你说氢燃料汽车是氢弹,未免有些太离谱了吧。北京冬奥会上,数百辆氢燃料汽车接送运动员和官员,如果氢燃料汽车真的这么危险,会用到冬奥会这样的场合吗?你有独立思考的能力吗?
很多人觉得氢气很危险,主要是因为氢气的逸散速度快,而且爆炸极限低,因此得出了氢燃料汽车是移动炸弹的结论。
但是中科院院士衣宝廉表示,氢燃料汽车的安全问题,恰好可以利用氢燃料汽车的两个特性,扩散速度快、易检测。在可能有氢泄漏的地点,均安装氢气传感器,当氢浓度达到千分之五时,自动启动轴流风机,将氢气排除,确保安全。至今全世界有三万多辆燃料电池车在运行,还没有一辆车发生燃烧和爆炸事故。
氢气是世界上最轻的气体,一般是使用碳纤维缠绕复合材料压力容器,这种容器的压力可以达到70MPA,加压是为了让氢气液化然后便于储存,氢气虽然危险,但要达到爆燃的条件很苛刻,一是要在密闭容器内,二是要有足够量的氢气浓度和氧气混合气体,但是恰恰因为氢气的逸散速度快,不会沉积,所以就算储氢罐的氢气泄露被点燃,也不会发生爆炸,反而是汽油因为密度比较高,容易沉积,更容易发生爆炸,事实上很多实验也验证过氢气发生燃烧爆炸的几率比汽油,动力电池要小的多。
储氢罐可以承受轻武器的射击,可以安全通过C-NCAP的碰撞测试,至于很多人津津乐道的氢脆问题,压力罐是碳纤维的,氢气运输管道都针对氢脆进行了针对性处理。
氢燃料汽车专利都在日本人手里?
前些年确实有数据显示,丰田掌握了全球70%的氢燃料汽车方面的专利,但是随着这几年的发展,国产车企也在奋起直追,氢燃料汽车是一项新兴技术,不存在一家先发企业能够垄断全部技术的情况,目前国内的长城、吉利、广汽,都有独立制造氢燃料汽车的技术,长安的深蓝SL03氢燃料汽车的核心零部件都是自主生产,只不过在续航里程、催化剂铂的使用量方面,距离丰田的第三代MIrai还有一段距离,但是并不是完全被日本卡脖子。
所谓的发展氢燃料技术,要被日本人卡脖子,给丰田交专利费的说法,完全是无稽之谈。
连日产本田都放弃氢燃料汽车了,为什么国内车企还要研发?
这个说法充分表明了,很多网友没有长文本阅读的能力,只有短视频、短平快信息的接受能力。目前唯一一个正式宣布放弃氢燃料汽车研发的就是日产汽车,2021年宣布暂停与戴姆勒及福特合作开发燃料电池汽车的计划,但是日产汽车都什么样了,你没数吗?成本杀手戈恩叫停多个研发项目,技术日产还剩下什么了?日产汽车只能奋起直追,氢燃料只能放一放。
实际上,已经越来越多的车企加入到氢燃料汽车的研发之中。本田暂时停止下一代Clarity的研发,但是氢燃料技术的研发没有停止。宝马、奔驰、奥迪、通用、福特、现代、广汽、吉利、长城、海马……都加入到了氢燃料汽车的研发,目前业内的共识是,氢燃料汽车是先商用车,后乘用车。因为氢燃料汽车的突出优点是比能量较高,可以输出0.5~1kWh/kg,是锂离子电池储能的数倍。所以,燃料电池车特别适合于重载车和长途运输汽车。
电解水制氢,再用氢气驱动车辆,不是脱裤子放屁吗?
首先,氢气的来源不只是电解水,电解水是目前经济效益最低的制氢方式,我国每年都有大量的工业副产品氢气,这些氢气是灰氢,需要提纯,中石化已经建成年产数千吨的氢气提纯设备,学名是S-PSA氢气纯化成套技术,感兴趣可以去搜索。
其次,电解水制氢,也是一个储能的手段,就像很多人永远也想不通,为什么要在晚上把水库下游的水抽到上游去,白天再来发电?因为用电低谷期的电存不住啊,你不用还不是白白浪费了,你说用充进电池存起来,需要多少电池啊?而用低谷期的电能制氢,就是储存电能的一种方式,除此之外,太阳能发电制氢,也在我国的西部地区快速布局。
我们距离氢能社会还有多远?
尽管以上这些问题,看起来都是利好氢燃料汽车发展的,但是我们必须要正视氢燃料汽车的普及依然困难重重,氢燃料汽车在未来10年以内都没有普及的可能性,可能要到2040年左右,才会真正大规模普及。
氢燃料汽车目前仍然存在,制氢成本较高,氢燃料汽车的价格偏贵,氢气的大规模运输和存储不便,加氢站的网络铺设任重道远等等问题,这哪一个问题不解决,氢燃料汽车都不可能普及。氢燃料汽车未来10年可能首先会在商用车上面普及,再慢慢过渡到乘用车上。
氢能的社会虽然美好,但是也道阻且长,对于咱们国内车企来说,积极布局,厚积薄发才是王道,氢燃料汽车是代表未来的技术,虽然当下不可能普及,但是只有有准备的人,才能抓住未来的机遇。
2、氢能源动力汽车的优缺点:新能源优点缺点和用途
新能源优点缺点和用途
各种新能源的优缺点是什么?
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
常见新能源
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。现在很多公司已经开始着手利用太阳能,例如太阳灶、太阳能烤箱、太阳灶反光膜、太阳能开水器等系列产品。太阳能清洁环保,无任何污染,利用价值高,太阳能更没有能源短缺这一说,其种种优点决定了其在能源更替中的不可取代的地位。
太阳能可分为3种:
1、太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2、太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
3、太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A、核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的'裂变释放出的能量
B、核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C、核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用。
核能的利用存在的主要问题:
(1)、资源利用率低
(2)、反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)、反应堆的安全问题尚需不断监控及改进
(4)、核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)、核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
生物质能利用现状
2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。
中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。
海洋渗透能
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
可以利用电解水分子和光以及化学分解水分子的方式,来分解到可燃烧的氢气,它可作为新的,多用途的能源来替代现有的矿物质能源。水分子的分解过程简而易行,投资少见效快。这给水能的综合利用带来了广泛的前景,在地球上,水是一种到处可见的液态物质。通过水的分解装置,制备出氢燃料,可用于汽车,航天航空,热力发电等工业和民用方面,在较大的程度上,缓解了人类对矿物质资源的过分依赖。
新能源优点缺点和用途
各种新能源的优缺点是什么?
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
常见新能源
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。现在很多公司已经开始着手利用太阳能,例如太阳灶、太阳能烤箱、太阳灶反光膜、太阳能开水器等系列产品。太阳能清洁环保,无任何污染,利用价值高,太阳能更没有能源短缺这一说,其种种优点决定了其在能源更替中的不可取代的地位。
太阳能可分为3种:
1、太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2、太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
3、太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A、核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的'裂变释放出的能量
B、核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C、核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用。
核能的利用存在的主要问题:
(1)、资源利用率低
(2)、反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)、反应堆的安全问题尚需不断监控及改进
(4)、核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)、核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
生物质能利用现状
2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。
中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。
海洋渗透能
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
可以利用电解水分子和光以及化学分解水分子的方式,来分解到可燃烧的氢气,它可作为新的,多用途的能源来替代现有的矿物质能源。水分子的分解过程简而易行,投资少见效快。这给水能的综合利用带来了广泛的前景,在地球上,水是一种到处可见的液态物质。通过水的分解装置,制备出氢燃料,可用于汽车,航天航空,热力发电等工业和民用方面,在较大的程度上,缓解了人类对矿物质资源的过分依赖。
新能源优点缺点和用途
新能源汽车的优点和缺点是什么?
新能源汽车是指采用非常规车用燃料作为动力来源,采用新技术、新结构的汽车。
现在的新能源汽车有多种,包括包括燃气汽车、燃料电池电动汽车、纯电动汽车、液化石油气汽车、氢能源动力汽车、混合动力汽车、太阳能汽车等。
新能源汽车的优点:
1、节约燃油能源。一般是用天然气、石油气、氢气、电力作为动力。
2、减少废气排放,有效的保护环境。电动汽车不产生尾气,没有污染。氢能源汽车尾气是水,对环境没有污染。
3、效率高。一般新能源汽车采用新技术,新结构,使它的效率更高。
4、噪声低。
新能源汽车缺点:
1、因为新能源汽车处于起步阶段,技术还不是很成熟。
2、车辆保有量低,充电、加气、维修等不太方便。
3、一般车辆排量较小,动力不足,不适合长距离行驶。
现在价格在5-10万的新能源汽车,只有纯电动汽车有批量生产,选择性不是太大。
本文关键词:新能源优点缺点和用途怎么写,新能源的优点和缺点以及用途,新能源和传统能源的缺点跟优点,新能源的优缺点,新能源有哪些缺点。这就是关于《氢能源动力汽车的优缺点,新能源优点缺点和用途(丰田宣告:电动只是过渡)》的所有内容,希望对您能有所帮助!