您当前的位置:首页 > 精选问答 > 内容

瑞利衰落信道(简述天线反射损耗存在或出现的原因)

● 瑞利衰落信道———多径衰落导致多条均很弱的路径信号,2. 空间传播损耗(dB)多径传播和多径衰落1.多径传播天线辐射的信号以三种方式传播:地波、天波和空间波(后者即称谓的直线波);● 当电磁波遇有比其波长要大的障碍物时,3)莱斯信道:当接收信号中有视距传播的直达波信号时,则接收到的信号会受到平坦衰落,nakagami分布和瑞利分布的区别1)瑞利信道:发射信号经历N跳独立的衰落路径(没有强信号)到达接收端,无线信道空间传输损耗超高频和微波波段信号的空间传播,从而形成信号快衰落称为瑞利衰落,瑞利衰落适用于从发射机到接收机不存在直射信号的情况。

简述天线反射损耗存在或出现的原因

反射损耗与电磁波的波阻抗Zw和屏蔽材料的特征阻抗Zs有关。R=1g(Zw \ 4zs )db式中可以看出,对于特定的屏蔽材料(Zs一定),被屏蔽的电磁波的波阻抗越高,则反射损耗越大;对于确定的电磁波(Zw 一定),屏蔽材料的阻抗越低,则反射损耗越大。一.回波损耗:return loss。回波损耗是表示信号反射性能的参数。回波损耗说明入射功率的一部分被反射回到信号源。例如,如果注入1mW (0dBm)功率给放大器其中10%被反射(反弹)回来,回波损耗就是10dB。从数学角度看,回波损耗为-10 log [(反射功率)/(入射功率)]。回波损耗通常在输入和输出都进行规定。二.传输损耗传输损耗是指在传输过程中因传输介质等因素引起的能力损失。无线信道空间传输损耗超高频和微波波段信号的空间传播,会对信号带来多种传损伤、很大衰减和多径衰落。1.直线传播损伤● 衰减和失真;● 自由空间损耗;● 噪声;● 大气吸收;● 多径和折射。2.衰减因素双绞线、电缆到光纤、波导等传输媒体,都是导向媒体,而在自由空间长距离的电磁波传播,属于非导向媒体传输;因此衰减是较为复杂的距离函数,并在地球周围受到充满大气层的影响。传播衰减主要影响因素是:传播频段f,传播距离L,电磁波速率C(近于光速)。自由空间传播损耗1. 微波段信号远程传播如卫星到地面约36000km。信号波束随传播距离而发散。上行链路的发射信号功率,由大功率速调管可达上千瓦,而卫星转发器只能靠太阳能供电,由于卫星表面积受限,因此下行链路发射功率很难达到上百瓦。因此地球站接收信号功率不过微瓦级,并且还包含了收、发天线增益几十个dB的补偿效果。2. 空间传播损耗(dB)多径传播和多径衰落1.多径传播天线辐射的信号以三种方式传播:地波、天波和空间波(后者即称谓的直线波);● 当电磁波遇有比其波长要大的障碍物时,则发生反射;● 并在该物体边界进行衍射(绕射);● 若障碍物尺寸不大于电磁波长,会发生散射,即散射几路弱信号———多径衰落。2.多径传播后果● 多径到达的信号,由于相位不同,强弱相差很大,若无序混迭、相位抵消,就使接收信号难以检测与恢复质量良好的信息;● 产生严重的码间干拢(ISI);● 特别是在较高速度的移动台天线发出的信号,运动方向、障碍物环境较快变化,多径信号中主路径不稳定等因素导致的接收信号更难处理。3.衰落类型● 慢衰落(平坦衰落—flat fading);● 快衰落(fast fading);● 选择性衰落(Selective fading)。4.衰落信道的3种类型● 高斯信道———是最简单的信道模型,同时它更符合于通信恒参传输媒体。本书各种传输系统,均是基于高斯信道进行性能分析。● 瑞利衰落信道———多径衰落导致多条均很弱的路径信号,而不存在一条主路径。● 赖斯衰落信道———是较瑞利衰落利于处理的情况,它具有明显的主路径和多个较弱的间接路径。5.多径衰落环境下的信号接收● 选用适当的分集技术与合并处理● 自适应均衡● 前向纠错编码● 高性能传输技术———如TCM,复合编码,OFDM等电波在自由空间传播的损耗公式为:Lbs(dB) = 32.45 + 20lgf(MHz) + 20lgd(km)式中,Lbs为自由空间的路径传播损耗,它与收发天线增益Gr、Gt无关,仅与传输路径有关。如果将其他参数保持不变,仅使工作频率f(或传输距离d)提高一倍,则其自由空间的路径损耗就增加6dB。对于WLAN,工作在2.4GHz,在自由空间中传播损耗为(f = 2400MHz):Lbs = 100 + 20lgd(km)Lbs = 100 + 20lgd(km)距离(m) 1 5 20 30 40 50 80 100损耗(dB) 40 54 66 70 72 74 78 80而实际中,电波还要受到诸如地面的吸收、反射、障碍物的阻挡等影响。在室内的障碍物通常为墙壁、隔断、地板等。障碍物对电波的阻挡效果与障碍物的结构有关,木质结构的损耗为5dB,钢筋混凝土结构的损耗为25dB。以型号FH-AP2400的无线接入节点设备和FH-325的无线PCMCIA网卡为例,分析AP在室内覆盖范围的大小。为分析简单起见,只考虑空间传播和障碍物(墙壁、隔断、地板)阻挡对电波的损耗。下表列出了电波通过不同的障碍物后FH-AP2400(ISP)的有效覆盖距离。上表的数据是根据AP工作在11Mbps时的灵敏度计算得到的。当AP工作在更低的速率(5.5/2/1Mbps)时,有效覆盖距离还可以更大。

什么是衰落信道

在无线通信领域,衰落是指由于信道的变化导致接收信号的幅度发生随机变化的现象,即信号衰落。导致信号衰落的信道被称作衰落信道。衰落可按时间、空间、频率,三个角度来分类。(1)在时间上,分为慢衰落和快衰落。慢衰落描述的是信号幅度的长期变化,是传播环境在较长时间、较大范围内发生变化的结果,因此又被称为长期衰落、大尺度衰落。快衰落则描述了信号幅度的瞬时变化,与多径传播有关,又被称为短期衰落、小尺度衰落。慢衰落是快衰落的中值。多径传播使信号包络产生的起伏虽然比信号的周期缓慢,但是仍然可能是在秒或秒以下的数量级,衰落的周期常能和数字信号的一个码元周期相比较,故通常将由多径效应引起的衰落称为快衰落。即使没有多径效应,仅有一条无线电路径传播时,由于路径上季节、日夜、天气等的变化,也会使信号产生衰落现象。这种衰落的起伏周期可能较长,甚至以若干天或若干小时计,古称这种衰落为慢衰落。无线通信中,接收端可能会在一段时间内接收到许多来自不同路径的相同信号,这段时间称为延迟扩散(delay spread),而延迟扩散的倒数称作同调带宽(Coherence Bandwidth),物理意义就是在这段带宽区间,衰落的大小可视为相同的,当延迟扩散越大,同调带宽越小。而无线的信道是会随着时间的变化而不相同,如果有移动的情况下,信道变化的情况会更快速,因为同调时间会缩短,而同调时间的倒数,为多普勒扩散,物理意义就是在这段时间区间,衰落的情况差不多,当信号的传送时间大于同调时间,就会产生所谓的快衰落。(2)在空间上,分为瑞利衰落和莱斯衰落。瑞利衰落适用于从发射机到接收机不存在直射信号的情况;相反,莱斯衰落适用于发射机到接收机存在直射路径的情况。在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。如果收到的信号中除了经反射折射散射等来的信号外,还有从发射机直接到达接收机(如从卫星直接到达地面接收机)的信号,那么总信号的强度服从莱斯分布, 故称为莱斯衰落。(3)在频率上,分为平坦性衰落和选择性衰落。多径衰落可分为平坦衰落和频率选择性衰落。如果无线传播信道的频带比传送信号还宽,则接收到的信号会受到平坦衰落。在平坦衰落中,多重路径信道中的传送信号的频谱大致维持不变,虽然信号的强度会因多重路径引起的增益波动而随时间变化。在一个平坦衰落的信道里,信号的讯符周期远大于信道的延迟扩散时间,因此信道的脉冲响应近似于没有延迟延展(delay spread)。平坦衰落信道亦被称为窄频信道(narrowband channel),因为信号的带宽与平坦衰落的信道带宽相比下较为狭窄。当传送信号的带宽大于信道的同调带宽时,接收信号的增益和相位将会随着信号频谱的改变而变化,因而在接收端产生了信号失真,这就是选择性衰落。一般来说, 多路信号到达接收机的时间有先有后,即有相对时(间)延(迟)。 如果这些相对时延远小于一个符号的时间, 则可以认为多路信号几乎是同时到达接收机的。 这种情况下多径不会造成符号间的干扰。 这种衰落称为平坦衰落, 因为这种信道的频率响应在所用的频段内是平坦的。相反地,如果多路信号的相对时延与一个符号的时间相比不可忽略,那么当多路信号迭加时,不同时间的符号就会重叠在一起,造成符号间的干扰。 这种衰落称为频率选择性衰落,因为这种信道的频率响应在所用的频段内是不平坦的。平衰落是相对频率选择性衰落来说的。平衰落是指一个信号经过信道后保持频谱形状不变,如果一个信号经过传输后其频谱发生了变化,则认为是经历了频率选择性衰落。在Proakis的数字通信一书中,作者是这样描述频率选择性衰落的:如果在发送端发送一个理想脉冲信号,接收端能够接收到多个脉冲信号,那么这是一个频率选择性衰落信道。从频谱的角度来看,(只有)单个脉冲信号具有无限宽的平坦频谱;而多个脉冲信号的叠加其频谱必定不是平坦的。

多径瑞利衰落信道(Multipath Reyleigh Fading)的作用是什么

1瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。 通过电离层和对流层反射瑞利衰落2无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。 瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运动导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。

nakagami分布和瑞利分布的区别

1)瑞利信道:发射信号经历N跳独立的衰落路径(没有强信号)到达接收端,接收的合成信号包络服从瑞利分布。瑞利衰落信道是一种无线电信号传播环境的统计模型,这种模型假设信号通过无线信道后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。

2)瑞利分布的特点:瑞利分布是一个均值为0,方差为sigma^2 的平稳窄带高斯过程。

3)莱斯信道:当接收信号中有视距传播的直达波信号时,视距信号成为主接收信号分量,同时还有不同角度随机到达的多径分量叠加在这个主信号分量上,这时的接收信号就呈现为莱斯分布,甚至高斯分布。但当主信号减弱达到与其他多径信号分量的功率一样,即没有视距信号时,混合信号的包络又服从瑞利分布。

莱斯分布的概率密度函数为

4) Nakagami信道:瑞利和莱斯分布与实验数据有时不太吻合,因此人们提出了能吻合更多实验数据的一种更通用的信道衰落分布,就是Nakagami-m衰落。其分布为下式

Pr为平均功率,G(m)为伽马函数,m为衰落参数。m=1时上式退化为瑞利衰落;令,则上式近似为衰落参数为k的瑞利衰落;m = ∞代表无衰落。改变m的值,Nakagami衰落还可以转变为多种衰落模型。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 金立w909手机(金立w909信号不好)

下一篇: 男生网名最新版推荐



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号