您当前的位置:首页 > 养生 > 内容

cmos图像传感器芯片(CMOS图像传感器的基本原理与应用)

本文目录

  • CMOS图像传感器的基本原理与应用
  • cmos图像传感器能升级吗
  • CMOS是什么

CMOS图像传感器的基本原理与应用

图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将像素单元分为无源像素单元PPS(passive pixel schematic),有源像素单元APS(activepixel schematic)和对数式像素单元,有源像素单元APS又可分为光敏二极管型APS、光栅型APS.以上各种象素阵列单元各有特点,但是他们有着基本相同的工作原理。以下先介绍它们基本的工作原理,再介绍各种象素单元的特点。下图是单个象素的示意图。(1)首先进入“复位状态”,此时打开门管M.电容被充电至V,二极管处于反向状态;(2)然后进人“取样状态”.这时关闭门管M,在光照下二极管产生光电流,使电容上存贮的电荷放电,经过一个固定时间间隔后,电容C上存留的电荷量就与光照成正比例,这时就将一幅图像摄入到了敏感元件阵列之中了;(3)最后进入“读出状态”.这时再打开门管M,逐个读取各像素中电容C上存贮的电荷电压。无源像素单元PPS出现得最早,自出现以来结构没有多大变化。无源像素单元PPS结构简单,像素填充率高,量子效率比较高,但它有两个显着的缺点。一是,它的读出噪声比较大,其典型值为20个电子,而商业用的CCD级技术芯片其读出噪声典型值为20个电子。二,随着像素个数的增加,读出速率加快,于是读出噪声变大。光敏二极管型APS量子效率比较高,由于采用了新的消噪技术,输出图形信号质量比以前有许多提高,读出噪声一般为75~100个电子,此种结构的C3&适合于中低档的应用场合。在光栅型APS结构中,固定图形噪声得到了抑制。其读出噪声为10~20个电子。但它的工艺比较复杂,严格说并不能算完全的CMOS工艺。由于多晶硅覆盖层的引入,使其量子效率比较低,尤其对蓝光更是如此。就目前看来,其整体性能优势并不十分突出。 3.1噪声这是影响CMOS传感器性能的首要问题。这种噪声包括固定图形噪声FPN(Fixed pattern noise)、暗电流噪声、热噪声等。固定图形噪声产生的原因是一束同样的光照射到两个不同的象素上产生的输出信号不完全相同。噪声正是这样被引入的。对付固定图形噪声可以应用双采样或相关双采样技术。具体地说来有点像在设计模拟放大器时引入差分对来抑制共模噪声。双采样是先读出光照产生的电荷积分信号,暂存然后对象素单元进行复位,再读取此象素单元地输出信号。两者相减得出图像信号。两种采样均能有效抑制固定图形噪声。另外,相关双采样需要临时存储单元,随着象素地增加,存储单元也要增加。3.2暗电流物理器件不可能是理想的,如同亚阈值效应一样,由于杂质、受热等其他原因的影响,即使没有光照射到象素,象素单元也会产生电荷,这些电荷产生了暗电流。暗电流与光照产生的电荷很难进行区分。暗电流在像素阵列各处也不完全相同,它会导致固定图形噪声。对于含有积分功能的像素单元来说,暗电流所造成的固定图形噪声与积分时间成正比。暗电流的产生也是一个随机过程,它是散弹噪声的一个来源。因此,热噪声元件所产生的暗电流大小等于像素单元中的暗电流电子数的平方根。当长时间的积分单元被采用时,这种类型的噪声就变成了影响图像信号质量的主要因素,对于昏暗物体,长时间的积分是必要的,并且像素单元电容容量是有限的,于是暗电流电子的积累限制了积分的最长时间。为减少暗电流对图像信号的影响,首先可以采取降温手段。但是,仅对芯片降温是远远不够的,由暗电流产生的固定图形噪声不能完全通过双采样克服。采用的有效的方法是从已获得的图像信号中减去参考暗电流信号。3.3象素的饱和与溢出模糊类似于放大器由于线性区的范围有限而存在一个输入上限,对于CMOS图像传感芯片来说,它也有一个输入的上限。输入光信号若超过此上限,像素单元将饱和而不能进行光电转换。对于含有积分功能的像素单元来说,此上限由光电子积分单元的容量大小决定:对于不含积分功能的像素单元,该上限由流过光电二极管或三极管的最大电流决定。在输入光信号饱和时,溢出模糊就发生了。溢出模糊是由于像素单元的光电子饱和进而流出到邻近的像素单元上。溢出模糊反映到图像上就是一片特别亮的区域。这有些类似于照片上的曝光过度。溢出模糊可通过在像素单元内加入自动泄放管来克服,泄放管可以有效地将过剩电荷排出。但是,这只是限制了溢出,却不能使象素能真实还原出图像了。 据市场调研公司Cahners In-stat Group预测,未来几年内,基于CMOS图像传感器的影像产品将达到50%以上,也就是说,到时CMOS图像传感器将取代CCD而成为市场的主流。可见,CMOS摄像机的市场前景非常广阔.今后几年,全球CMOS图像传感器销售量将迅速增加,并将在许多数字图像应用领域向传统的CCD发起冲击。这是因为CMOS图像传感器件具有两大优点:一是价格比CCD器件低15%~25%;二是其芯片的结构可方便地与其它硅基元器件集成,从而可有效地降低整个系统的成本。尽管过去CMOS图像传感器的图像质量比CCD差且分辨率低,然而经过迅速改进,已不断逼近CCD的技术水平,这种传感器件已广泛应用于对分辨率要求较低的数字相机、电子玩具、电视会议和保安系统的摄像结构中。日本Nintendo有限公司推出的采用CMOS图像传感器的低分辨率数字相机,上市头两个月,销售量就达100万台。三菱公司、摩托罗拉、惠普、东芝和Intel公司也紧接着上市该类产品。 1.数码相机人们使用胶卷照相机已经上百年了,20世纪80年代以来,人们利用高新技术,发展了不用胶卷的CCD数码相机。使传统的胶卷照相机产生了根本的变化。电可写可控的廉价FLASH ROM的出现,以及低功耗、低价位的CMOS摄像头的问世。为数码相机打开了新的局面,数码相机功能框图如右下图所示。从图中可以看出,数码相机的内部装置已经和传统照相机完全不同了,彩色CMOS摄像头在电子快门的控制下,摄取一幅照片存于DRAM中,然后再转至FLASH ROM中存放起来。根据FLASH ROM的容量和图像数据的压缩水平,可以决定能存照片的张数。如果将ROM换成PCMCIA卡,就可以通过换卡,扩大数码相机的容量,这就像更换胶卷一样,将数码相机的数字图像信息转存至PC机的硬盘中存贮,这就大大方便了照片的存贮、检索、处理、和传送。2.CMOS数字摄像机美国Omni Vison公司推出的由OV7610型CMOS彩色数字图像芯片和OV511型高级摄像机以及USB接口芯片所组成的USB摄像机,其分辨率高达640 x 480,适用于通过通用串行总线传输的视频系统。OV511型高级摄像机的推出,可使得PC机能以更加实时的方法获取大量视频信息,其压缩芯片的压缩比可以达到7:1,从而保证了图像传感器到PC机的快速图像传输。对于CIF图像格式,OV511型可支持高达30帧/秒的传输速率、减少了低带宽应用中通常会出现的图像跳动现象。OV511型作为高性能的USB接口的控制器,它具有足够的灵活性,适合包括视频会议、视频电子邮件、计算机多媒体和保安监控等场合应用。3.其他领域应用CMOS图像传感器是一种多功能传感器,由于它兼具CCD图像传感器的性能,因此可进入CCD的应用领域,但它又有自己独特的优点,所以开拓了许多新的应用领域。除了上述介绍的主要应用之外,CMOS图像传感器还可应用于数字静态摄像机和医用小型摄像机等。例如,心脏外科医生可以在患者胸部安装一个小“硅眼”,以便在手术后监视手术效果,CCD就很难实现这种应用。4.应用于X光机市场在牙科用X光机市场上,用于从口腔内侧给1~2颗牙拍摄X光片的小型CMOS传感器在欧洲已达到实用水平,在美国也在推广。而在从口腔外侧拍摄全景X光片的X光机领域,今后仍将以CCD传感器为主。 以上从与CCD的对比开始,介绍CMOS图像传感器器件物理层次的原理、性能、优点、不足及应对措施;之后谈及了CMOS图像传感器的市场状况以及一些应用领域。从中可以看出,作为一种新生的半导体器件,CMOS以其自身的特点表现出了极大的优势和潜力,这种潜力将在不久的未来进一步得到发挥。

cmos图像传感器能升级吗

cmos图像传感器能升级。

cmos图像传感器能升级,可应用于照相和摄影一体化的照相机或数字照相机,片上照相机(实现图像再现),人工视网膜芯片,远距离实时测定和图像输出,动态监测及图像压缩功能等(不是以图像再现为目的)。

cmos图像传感器特点:

它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。

CMOS是什么

指互补金属氧化物(PMOS管和NMOS管)共同构成的互补型MOS集成电路制造工艺,它的特点是低功耗。由于CMOS中一对MOS组成的门电路在瞬间看,要么PMOS导通,要么NMOS导通,要么都截至,比线性的三极管(BJT)效率要高得多,因此功耗很低。

早期的CMOS是一块单独的芯片MC146818A(DIP封装),共有64个字节存放系统信息。386以后的微机一般将 MC146818A芯片集成到其它的IC芯片中(如82C206,PQFP封装),586以后主板上更是将CMOS与系统实时时钟和后备电池集成到一块叫做DALLDA DS1287的芯片中。随着微机的发展、可设置参数的增多,现在的CMOS RAM一般都有128字节及至256字节的容量。为保持兼容性,各BIOS厂商都将自己的BIOS中关于CMOS RAM的前64字节内容的设置统一与MC146818A的CMOS RAM格式一致,而在扩展出来的部分加入自己的特殊设置,所以不同厂家的BIOS芯片一般不能互换,即使是能互换的,互换后也要对CMOS信息重新设置以确保系统正常运行。相对于其他逻辑系列,

CMOS逻辑电路具有以下优点:

1.允许的电源电压范围宽,方便电源电路的设计

2.逻辑摆幅大,使电路抗干扰能力强

3.静态功耗低

4.隔离栅结构使CMOS器件的输入电阻极大,从而使CMOS器件驱动同类逻辑门的能力比其他系列强得多

CMOS(本意是指互补金属氧化物半导体存储器,是一种大规模应用于集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯片,主要用来保存当前系统的硬件配置和操作人员对某些参数的设定。CMOSRAM芯片由系统通过一块后备电池供电,因此无论是在关机状态中,还是遇到系统掉电情况,CMOS信息都不会丢失。

由于CMOSRAM芯片本身只是一块存储器,只具有保存数据的功能,所以对CMOS中各项参数的设定要通过专门的程序。早期的CMOS设置程序驻留在软盘上的(如IBM的PC/AT机型),使用很不方便。现在多数厂家将CMOS设置程序做到了BIOS芯片中,在开机时通过按下某个特定键就可进入CMOS设置程序而非常方便地对系统进行设置,因此这种CMOS设置又通常被叫做BIOS设置。

CMOS制造工艺也被应用于制作数码影像器材的感光元件(常见的有TTL和CMOS),尤其是片幅规格较大的单反数码相机。虽然在用途上与过去CMOS电路主要作为固件或计算工具的用途非常不同,但基本上它仍然是采取CMOS的工艺,只是将纯粹逻辑运算的功能转变成接收外界光线后转化为电能,再透过芯片上的数码─类比转换器(ADC)将获得的影像讯号转变为数码讯号输出。

CMOS与CCD的区别

1. 成像过程

CCD与CMOS图像传感器光电转换的原理相同,他们最主要的差别在于信号的读出过程不同;由于CCD仅有一个(或少数几个)输出节点统一读出,其信号输出的一致性非常好;而CMOS芯片中,每个像素都有各自的信号放大器,各自进行电荷-电压的转换,其信号输出的一致性较差。但是CCD为了读出整幅图像信号,要求输出放大器的信号带宽较宽,而在CMOS 芯片中,每个像元中的放大器的带宽要求较低,大大降低了芯片的功耗,这就是CMOS芯片功耗比CCD要低的主要原因。尽管降低了功耗,但是数以百万的放大器的不一致性却带来了更高的固定噪声,这又是CMOS相对CCD的固有劣势。

2. 集成性

从制造工艺的角度看,CCD中电路和器件是集成在半导体单晶材料上,工艺较复杂,世界上只有少数几家厂商能够生产CCD晶元,如DALSA、SONY、松下等。CCD仅能输出模拟电信号,需要后续的地址译码器、模拟转换器、图像信号处理器处理,并且还需要提供三组不同电压的电源同步时钟控制电路,集成度非常低。而CMOS是集成在被称作金属氧化物的半导体材料上,这种工艺与生产数以万计的计算机芯片和存储设备等半导体集成电路的工艺相同,因此声场CMOS的成本相对CCD低很多。同时CMOS芯片能将图像信号放大器、信号读取电路、A/D转换电路、图像信号处理器及控制器等集成到一块芯片上,只需一块芯片就可以实现相机的的所有基本功能,集成度很高,芯片级相机概念就是从这产生的。随着CMOS成像技术的不断发展,有越来越多的公司可以提供高品质的CMOS成像芯片,包括:Micron、 CMOSIS、Cypress等。

3. 速度

CCD采用逐个光敏输出,只能按照规定的程序输出,速度较慢。CMOS有多个电荷-电压转换器和行列开关控制,读出速度快很多,大部分500fps以上的高速相机都是CMOS相机。此外CMOS 的地址选通开关可以随机采样,实现子窗口输出,在仅输出子窗口图像时可以获得更高的速度。

4. 噪声

CCD技术发展较早,比较成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS光电传感器有一定优势。由于CMOS图像传感器集成度高,各元件、电路之间距离很近,干扰比较严重,噪声对图像质量影响很大。随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 英伟达9300ge(NVIDIAGeForce9300GE是独立显卡的还是集成显卡)

下一篇: 一加rom官网(一加手机有官方网站吗)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号