您当前的位置:首页 > 时尚 > 内容

多边形内角和(多边形内角和公式)

各位网友们好,相信很多人对多边形内角和都不是特别的了解,因此呢,今天就来为大家分享下关于多边形内角和以及多边形内角和公式的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录一览

1、多边形内角和公式

2、多边形的内角和怎么算?

多边形内角和公式

n边形的内角和公式为(n - 2)×180°(n大于等于3且n为整数)。

推论

任意正多边形的外角和=360°

正多边形任意两条相邻边连线所构成的三角形是等腰三角形

多边形内角和定理证明

在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。

即n边形的内角和等于(n-2)×180°.(n为边数)。

扩展资料:

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。

即n边形的内角和等于(n-2)×180°.(n为边数)。

证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.

这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)

所以n边形的内角和是(n-2)×180°.

证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,

这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)

以P为公共顶点的(n-1)个角的和是180°

所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.(n为边数)

参考资料来源:百度百科-多边形内角和定理

多边形的内角和怎么算?

多边形的内角和计算公式是N边形的内角和=N*180°-360°=N*180°-2*180°=(N-2)*180°。由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的 ,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 新奶妈伺候 爷却被惨拒(bgmbgmbgm 太太网站网址)

下一篇: 冬天最佳跑步时间,最佳运动时间是什么时候



猜你感兴趣

推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号