您当前的位置:首页 > 时尚 > 内容

如何用软件控制音箱(小爱音箱用什么app控制)

如何用软件控制音箱(小爱音箱用什么app控制)?如果你对这个不了解,来看看!

【智能家居】小爱音箱Play增强版这样玩|教你1招变身遥控器,下面是TechWong给大家的分享,一起来看看。

如何用软件控制音箱

「智能家居」是一个以展示米家智能家居产品玩法为主的图文教程栏目,栏目内容包含已接入米家APP的众多智能家居设备,如何选购以及设备玩法的详细操作教程。

由@ TechWong推出,每周至少上线1期。旨在为不熟练的米家智能家居产品新、老米粉提供便利,也希望大家都可以来评论区留言交流❤️

今年春节期间,父母家里的广电电视的机顶盒的遥控器突然换了,无奈春节期间师傅不上班,买不到新的遥控器,打电话咨询了客服说年后换新的,价格要99元一个。

我就和父母说,一方面,其实没必要花这个冤枉钱,万一又坏了? 另一方面,有没有救急的方法,机顶盒遥控器坏了,无法正常看电视也恼火,有没有办法解决?其实,有的,直接使用带红外遥控器的手机或者小爱音箱都可以,解决的。

本期智能家居教程,我就和大家分享一下,如何使用小爱音箱Play增强版来添加红外遥控器,控制家里的广电电视的机顶盒?

准备工作

首先,你需要的设置是:带红外遥控的小爱音箱,比如,小爱音箱Play、小爱音箱Play增强版、Redmi小爱音箱 Play等。

小爱音箱Play、小爱音箱Play增强版

如何操作

第1步:打开米家APP,进入小爱音箱Play增强版的操作页面,找到【添加红外遥控器】选项,如图:

第1步

第2步:进入【添加红外遥控器】操作页面后,选择要控制的红外电器,这里需要控制的是电视机顶盒,所以,选择【电视】,如图:

第2步

第3步:进入【机顶盒】页面,结合自己的家庭设备的地点、品牌和型号,寻找并选择合适的参数进行设置,这里,我选择的是成都移动魔百盒,如图:

第3步

第4步:匹配到家里的机顶盒品牌和型号之后,就能看到“按钮控制机顶盒是否响应”的界面,主要是完成“电源、音量、频道”3项指令的测试。一旦测试通过之后,就能完成IPTV机顶盒遥控器的添加,如图:

第4步

第5步:IPTV机顶盒遥控器添加成功之后,我们就能在米家APP的看到一个IPTV机顶盒遥控器的图标,点击它就能显示更多设置的操作界面,如图: 虚拟的IPTV机顶盒遥控器支持的按键和实体遥控器差不多,操作起来简单,还是很方便的。

第5步

好了,以上就是通过小爱音箱Play增强版实现IPTV机顶盒遥控器的玩法,本文只是起到抛砖引玉的作用,当然,当然,你也可以如法炮制,控制家里的传统空调等红外设备电器。

小爱音箱用什么app控制

机器之心报道

编辑:张倩、蛋酱

通过 Transformers Agents,你可以控制 10 万多个 Hugging Face 模型完成各种多模态任务。

从聊天到编程再到支持各种插件,强大的 ChatGPT 早就不是一个简单的对话助手,而是朝着 AI 界的「管理层」不断前进。

3 月 23 号,OpenAI 宣布 ChatGPT 开始支持各类第三方插件,比如著名的理工科神器 Wolfram Alpha。借助该神器,原本鸡兔同笼都算不准的 ChatGPT 一跃成为理工科尖子生。Twitter 上许多人评论说,ChatGPT 插件的推出看起来有点像 2008 年 iPhone App Store 的推出。这也意味着 AI 聊天机器人正在进入一个新的进化阶段 ——「meta app」阶段。

紧接着,4 月初,浙江大学和微软亚研的研究者提出了一种名为「HuggingGPT」的重要方法,可以看做是上述路线的一次大规模演示。HuggingGPT 让 ChatGPT 充当控制器(可以理解为管理层),由它来管理其他的大量 AI 模型,从而解决一些复杂的 AI 任务。具体来说,HuggingGPT 在收到用户请求时使用 ChatGPT 进行任务规划,根据 HuggingFace 中可用的功能描述选择模型,用选定的 AI 模型执行每个子任务,并根据执行结果汇总响应。

这种做法可以弥补当前大模型的很多不足,比如可处理的模态有限,在某些方面比不上专业模型等。

虽然调度的是 HuggingFace 的模型,但 HuggingGPT 毕竟不是 HuggingFace 官方出品。刚刚,HuggingFace 终于出手了。

和 HuggingGPT 理念类似,他们推出了一个新的 API——HuggingFace Transformers Agents。通过 Transformers Agents,你可以控制 10 万多个 Hugging Face 模型完成各种多模态任务。

比如在下面这个例子中,你想让 Transformers Agents 大声解释图片上描绘了什么内容。它会尝试理解你的指令(Read out loud thecontent of the image),然后将其转化为 prompt,并挑选合适的模型、工具来完成你指定的任务。

英伟达 AI 科学家 Jim Fan 评价说:这一天终于来了,这是迈向「Everything APP」(万事通 APP)的重要一步。

不过也有人说,这和 AutoGPT 的自动迭代还不一样,它更像是省掉了写 prompt 并手动指定工具这些步骤,距离万事通 APP 还为时过早。

Transformers Agents 地址:https://huggingface.co/docs/transformers/transformers_agents

Transformers Agents 怎么用?

在发布的同时,HuggingFace 就放出了 Colab 地址,任何人都可以上手一试:

https://huggingface.co/docs/transformers/en/transformers_agents

简而言之,它在 transformers 之上提供了一个自然语言 API:首先定义一套策划的工具,并设计了一个智能体来解释自然语言和使用这些工具。

而且,Transformers Agents 在设计上是可扩展的。

团队已经确定了一组可以授权给智能体的工具,以下是已集成的工具列表:

文档问答:给定一个图像格式的文档(例如 PDF),回答关于该文档的问题 (Donut)文本问答:给定一段长文本和一个问题,回答文本中的问题(Flan-T5)无条件的图像说明:为图像添加说明 (BLIP)图片问答:给定一张图片,回答关于这张图片的问题(VILT)图像分割:给定图像和 prompt,输出该 prompt 的分割掩码(CLIPSeg)语音转文本:给定一个人说话的录音,将语音转录成文本 (Whisper)文本到语音:将文本转换为语音(SpeechT5)零样本文本分类:给定文本和标签列表,确定文本与哪个标签最对应 ( BART )文本摘要:用一个或几个句子来概括一个长文本(BART)翻译:将文本翻译成给定的语言(NLLB)

这些工具集成在 transformers 中,也可以手动使用:

from transformers import load_tooltool = load_tool("text-to-speech")audio = tool("This is a text to speech tool")

用户还可以将工具的代码推送到 Hugging Face Space 或模型存储库,以便直接通过智能体来利用该工具,比如:

文本下载器:从 web URL 下载文本Text to image : 根据 prompt 生成图像,利用 Stable Diffusion图像转换:在给定初始图像和 prompt 的情况下修改图像,利用 instruct pix2pix stable diffusionText to video : 根据 prompt 生成小视频,利用 damo-vilab

具体玩法的话,我们先看几个 HuggingFace 的示例:

生成图像描述:

agent.run("Caption the following image", image=image)

朗读文本:

agent.run("Read the following text out loud", text=text)

输入:A beaver is swimming in the water

读取文件:

快速上手

在运行 agent.run, 之前,需要先实例化一个大语言模型智能体。这里支持 OpenAI 的模型以及 BigCode、OpenAssistant 等开源模型。

首先,请安装 agents 附加组件以安装所有默认依赖项:

pip install transformers[agents]

要使用 openAI 模型,需要在安装依赖项后实例化一个「OpenAiAgent」 openai:

pip install openaifrom transformers import OpenAiAgentagent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")

要使用 BigCode 或 OpenAssistant,首先登录以访问推理 API:

from huggingface_hub import loginlogin("<YOUR_TOKEN>")

然后,实例化智能体:

from transformers import HfAgentStarcoderagent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")StarcoderBaseagent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")OpenAssistantagent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")

如果用户对此模型(或另一个模型)有自己的推理端点,可以将上面的 URL 替换为自己的 URL 端点。

接下来,我们了解一下 Transformers Agents 提供的两个 API:

单次执行

单次执行是在使用智能体的 run () 方法时:

agent.run("Draw me a picture of rivers and lakes.")

它会自动选择适合要执行的任务的工具并适当地执行,可在同一指令中执行一项或多项任务(不过指令越复杂,智能体失败的可能性就越大)。

agent.run("Draw me a picture of the sea then transform the picture to add an island")

每个 run () 操作都是独立的,因此可以针对不同的任务连续运行多次。如果想在执行过程中保持状态或将非文本对象传递给智能体,用户可以通过指定希望智能体使用的变量来实现。例如,用户可以生成第一张河流和湖泊图像,并通过执行以下操作要求模型更新该图片以添加一个岛屿:

picture = agent.run("Generate a picture of rivers and lakes.")updated_picture = agent.run("Transform the image in picture to add an island to it.", picture=picture)

当模型无法理解用户的请求并混合使用工具时,这会很有帮助。一个例子是:

agent.run("Draw me the picture of a capybara swimming in the sea")

在这里,模型可以用两种方式解释:

让 text-to-image 水豚在海里游泳或者,生成 text-to-image 水豚,然后使用 image-transformation 工具让它在海里游泳

如果用户想强制执行第一种情况,可以通过将 prompt 作为参数传递给它来实现:

agent.run("Draw me a picture of the prompt", prompt="a capybara swimming in the sea")

基于聊天的执行

智能体还有一种基于聊天的方法:

agent.chat("Generate a picture of rivers and lakes")

agent.chat ("Transform the picture so that there is a rock in there")

这是一种可以跨指令保持状态时。它更适合实验,但在单个指令上表现更好,而 run () 方法更擅长处理复杂指令。如果用户想传递非文本类型或特定 prompt,该方法也可以接受参数。

参考链接:

https://twitter.com/DrJimFan/status/1656352534213332996

https://twitter.com/cryptonerdcn/status/1656367960175575040


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 呻怎么读(啸怎么读)

下一篇: 动词的六种形式(动词开头用什么形式)



猜你感兴趣

推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号