一、hive定义?
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
二、hive函数?
扩展hive函数 案列以及解释
1.rand();
rand(int sedd)取随机数 返回值为double类型说明:返回一个0到1范围内的随机数。如果指定种子seed,则会等到一个稳定的随机数序列
2.round(double n,a) :
对输入的n数,保留a位小数,四舍五入, round(double a) 四舍五入
3.ceil:
向上取整 select ceil(45.6); --46
4.floor:
向下取整 select floor(45.6); --45
5.split(str,spliter) :
对字符串str 根据字符spliter切割 hive> select split("a,d,c",","); ["a","d","c"]
三、HIVE是什么?
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
四、hive的定义?
hive 是基于 hadoop 的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在 hadoop 中的大规模数据的机制。
hive 数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供 SQL 查询功能,能将 SQL 语句转变成 MapReduce 任务来执行。
五、hive工作机制?
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行
六、Hive是什么?
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。
其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
七、hive的优缺点?
优点
1.
简单容易上手:提供了类SQL查询语言HQL
2.
可扩展:为超大数据集设计了计算/扩展能力(MR作为计算引擎,HDFS作为存储系统) 一般情况下不需要重启服务Hive可以自由的扩展集群的规模。
3.
提供统一的元数据管理
4.
延展性:Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数
缺点
没有
八、kudu和hive区别?
kudu: 中文名:扭角林羚(拼音:niǔ jiǎo lín líng); 英文名:Greater kudu; 学名:Tragelaphus strepsiceros。 扭角林羚,又名大旋角羚、大弯角羚及大扭角条纹羚,是东非及非洲南部的羚羊。
hive:蜂巢,蜂窩;蜂群
九、基本逻辑运算?
有三种最基本的逻辑运算:
1)逻辑与 -- 用AB表示:当A,B都为1时,其值为1,否则为零;
2)逻辑或 -- 用 A+B 表示:当A,B都为0时,其值为0,否则为1;
3)逻辑非 -- 用 A上'¯'表示,当A=0时,A的非为1,A=1时,A的非为0。
扩展资料:
运用逻辑代数的基本公式及规则可以对逻辑函数进行变换,从而得到表达式的最简形式。这里所谓的最简形式是指最简与或式或者是最简或与式,它们的判别标准有两条:项数最少;在项数最少的条件下,项内的文字最少。
卡诺图是遵循一定规律构成的。由于这些规律,使逻辑代数的许多特性在图形上得到形象而直观的体现,从而使它成为公式证明、函数化简的有力工具。
十、hive相对clickhouse优势?
Hive相对于ClickHouse的优势主要在于:
1. SQL支持:Hive是基于Hadoop的分布式数据仓库,它提供了类SQL语言HiveQL,可以方便地进行数据分析和查询。而ClickHouse则专注于实时查询,它的查询语言ClickHouse Query是基于列式存储的。
2. 数据量处理:Hive适合处理大规模数据集,因为它是基于MapReduce的分布式计算框架,可以在集群上并行处理海量数据。而ClickHouse则更适合处理小到中等规模的数据集,因为它的设计是为了在单个节点上高效查询。
3. 功能支持:Hive提供了很多高级特性,如分区、桶、合并、重写等,使得用户可以更加灵活地处理数据。而ClickHouse则专注于高性能和实时查询,对于一些高级特性的支持相对较少。
4. 生态系统:Hive拥有丰富的生态系统,包括各种开源工具和库,如Pig、Mahout、Spark等。这些工具可以帮助用户更好地利用Hive进行数据分析和处理。而ClickHouse则相对较新,生态系统还不够完善。
总之,Hive适合处理大规模数据集和高级分析需求,而ClickHouse则更适合实时查询和小型数据集处理。选择哪种工具取决于具体的业务需求和数据规模。