您当前的位置:首页 > 美文摘抄 > 内容

矩阵运算(矩阵运算公式大全)

矩阵运算(矩阵运算公式大全)

在slam 和sfm领域,恢复相机位姿和3D点的坐标是其重要的任务,描述一个场景的3D点在不同相机的图像坐标之间的关系被称为对极几何关系。对极几何关系描述的矩阵通常有基本矩阵(fundamental matrix)、本质矩阵(essential matrix)、单应矩阵(homography matrix)。基本矩阵的求解算法有7点法、8点法;基本矩阵的求解算法有5点法、8点法;单应矩阵的求解算法为DLT算法。

在对极几何关系矩阵中,单应矩阵的求解、基本矩阵和本质矩阵的8点法求解算法统称为线性求解,而基本矩阵的7点法和本质矩阵的5点法称为非线性求解,尤其本质矩阵的5点法求解过程非常复杂,大多数教材都是先计算基本矩阵,然后利用内参和基本矩阵求解本质矩阵(如orb2-slam中本质矩阵的求解),5点法的求解涉及10次多项式的求解,故相关资料较少(包括波恩大学photogrammetry 课程,5点法求解E矩阵的过程也是直接跳过)。

关于其它对极几何(F-7points、F-8points、E-8points、H-DLT)的算法具体介绍,可以关注本人“视觉三维重建的关键技术与实现-colmap代码解析”课程视频,具体课程介绍:https://app0s6nfqrg6303.h5.xiaoeknow.com/v1/course/column/p_609161a1e4b071a81eb781a8?type=3

二、算法介绍

(1) 前提条件

Essential matrix 5个dof,故 最小支撑点为5对匹配点。

(2) 算法流程

首先借鉴求解f矩阵的线性表达式,得到有关本质矩阵元素的表达式如下:

填充元素可得:

step1 : 提取nullspace 的4个特征向量

因为未知数个数为9,E的dof 为5,则以上齐次方程的解存在4个基础解系,那么E矩阵的通解变为基础解系的线性组合,即:

由于E本身尺度不唯一,故为了不失一般性,令c_{w}=1,则未知数元素变为了[c_{x}, c_{y}, c_{z}];

代码如下:

step2 : 加入约束方程

把(1)式带入(2)和(3)中得到9个三元三次方程

step3: 利用Gauss-Jordan消元

由于三元三次求解不好求解,故可以建立等效方程,将其变成Aj=0;其中A矩阵是10*20的大小,j 是未知数c_{x}, c_{y}, c_{z}的20个组合。利用GaussJordan约减A可得到以下矩阵:

将(4)式有关z的多项式全部代入(5),便可得到关于z的一元10次方程.高斯约减的图示如下:

注:将Mx=0,约减成[I B]x=0

代码如下:

step 4: 求解E矩阵

根据step3 得到每个c_{z}都可以求出一组c_{x}, c_{y},带入(1)便可求解出E矩阵:

参考文献:

1.Recent Developments on Direct Relative Orientation[J].H Stewénius.ISPRS 2006

2.An efficient solution to the five-point relative pose problem[J]. D. Nister.EEE-T-PAMI, 26(6), 2004


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 网易同城约会(南京交友群2020)

下一篇: 哈利法塔(世界第一高楼1600米)



推荐阅读

网站内容来自网络,如有侵权请联系我们,立即删除! | 软文发布 | 粤ICP备2021106084号